On the irreducible part of the current correlation function in quantum completely integrable models
Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 2, pp. 208-217
Voir la notice de l'article provenant de la source Math-Net.Ru
A method for finding irreducible parts of currents correlation function in completely
integrable quantum models with the $R$-matrix of the XXX-type is suggested. Explicit
formulas for the Fouries coefficients of the irreducible part $A_n^k$ are obtained for
$n=4,5$ and some general properties of this coefficients for arbitrary $n$ are pointed out.
It is found that in the quantum nonlinear Schrödinger equation (in the repulsion case
at finite density) the expansion of the currents correlator in the power series in the
inverse large coupling constant agrees (at least up to the second order) with the hypothesis
about the power law of the decreasing of the amplitude of correlator oscillations
at large distances.
@article{TMF_1987_71_2_a3,
author = {A. V. Zabrodin},
title = {On the irreducible part of the current correlation function in quantum completely integrable models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {208--217},
publisher = {mathdoc},
volume = {71},
number = {2},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_71_2_a3/}
}
TY - JOUR AU - A. V. Zabrodin TI - On the irreducible part of the current correlation function in quantum completely integrable models JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1987 SP - 208 EP - 217 VL - 71 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1987_71_2_a3/ LA - ru ID - TMF_1987_71_2_a3 ER -
%0 Journal Article %A A. V. Zabrodin %T On the irreducible part of the current correlation function in quantum completely integrable models %J Teoretičeskaâ i matematičeskaâ fizika %D 1987 %P 208-217 %V 71 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1987_71_2_a3/ %G ru %F TMF_1987_71_2_a3
A. V. Zabrodin. On the irreducible part of the current correlation function in quantum completely integrable models. Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 2, pp. 208-217. http://geodesic.mathdoc.fr/item/TMF_1987_71_2_a3/