Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts $Z_3$ model
Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 2, pp. 163-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A series is constructed of conformal-invariant solutions of two-dimensional quantum field theory which possess global symmetry under the group $S_3$ of permutations of three elements.
@article{TMF_1987_71_2_a0,
     author = {A. B. Zamolodchikov and V. A. Fateev},
     title = {Representations of the algebra of {\textquotedblleft}parafermion currents{\textquotedblright} of spin 4/3 in two-dimensional conformal field theory. {Minimal} models and the tricritical potts $Z_3$ model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--178},
     year = {1987},
     volume = {71},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_71_2_a0/}
}
TY  - JOUR
AU  - A. B. Zamolodchikov
AU  - V. A. Fateev
TI  - Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts $Z_3$ model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 163
EP  - 178
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_71_2_a0/
LA  - ru
ID  - TMF_1987_71_2_a0
ER  - 
%0 Journal Article
%A A. B. Zamolodchikov
%A V. A. Fateev
%T Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts $Z_3$ model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 163-178
%V 71
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_71_2_a0/
%G ru
%F TMF_1987_71_2_a0
A. B. Zamolodchikov; V. A. Fateev. Representations of the algebra of “parafermion currents” of spin 4/3 in two-dimensional conformal field theory. Minimal models and the tricritical potts $Z_3$ model. Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 2, pp. 163-178. http://geodesic.mathdoc.fr/item/TMF_1987_71_2_a0/

[1] Polyakov A. M., Pisma v ZhETF, 12 (1970), 538–541

[2] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 | MR

[3] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., Nucl. Phys., B241 (1984), 333–373 | DOI | MR

[4] Friedan D., Qiu Z., Shenker S., Phys. Lett., B151 (1985), 37–43 | DOI | MR

[5] Dotsenko Vl. S., Fateev V. A., Nucl. Phys., B240 (FS12) (1984), 312–348 | DOI | MR

[6] Zamolodchikov A. B., Fateev V. A., ZhETF, 89 (1985), 380–399 | MR

[7] Knizhnik V. G., Zamolodchikov A. B., Nucl. Phys., B241 (1984), 83–103 | DOI | MR | Zbl

[8] Friedan D., Qiu Z., Shenker S., Phys. Rev. Lett., 52 (1984), 1575–1580 | DOI | MR

[9] Zamolodchikov A. B., Fateev V. A., ZhETF, 90 (1986), 1553–1566

[10] Dotsenko Vl. S., Nucl. Phys., B235 (FS11) (1984), 54–73 | DOI | MR

[11] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974 | MR

[12] Fradkin E., Kadanoff L., Nucl. Phys., B170 (FS1) (1980), 1–17 | DOI | MR

[13] Zamolodchikov A. B., TMF, 65:3 (1985), 347–359 | MR

[14] Burbaki N., Gruppy i algebry Li, Mir, M., 1978 | MR

[15] Kac V. G., Lecture Notes in Physics, 94, 1979, 441–481 | DOI

[16] Feigin B. L., Fuks D. B., Funkts. analiz i ego prilozh., 16:2 (1982), 47–63 | MR | Zbl

[17] Eichenherr H., Phys. Lett., B151 (1985), 26–29 | DOI | MR

[18] Goddard P., Kent A., Olive D., Phys. Lett., B152 (1985), 88–92 | DOI | MR | Zbl