Integral representations of the Schwinger functions for wick polynomials in the free field
Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 1, pp. 31-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain integral representations of Schwinger functions for Wick polynomials in the free field, in other words, we obtain Euclidean realizations of Wightman quantum fields given by Wick polynomials in the free field. Using these Euclidean realizations, a new non-perturbative mathematically rigorous approach to constructing quantum field theory with the polynomial interaction in a finite volume of $d$-dimensional spacetime $(d\geq 2)$ and without ultraviolet cut-offs is proposed. In particular, for imaginary values of the coupling constant the generating functional of Schwinger functions is constructed. The theory constructed by this method takes explicitly into account the presence of ultraviolet divergences and its expansion in powers of the coupling constant gives the renormalized series.
@article{TMF_1987_71_1_a3,
     author = {\`E. P. Osipov},
     title = {Integral representations of the {Schwinger} functions for wick polynomials in the free field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {31--39},
     year = {1987},
     volume = {71},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_71_1_a3/}
}
TY  - JOUR
AU  - È. P. Osipov
TI  - Integral representations of the Schwinger functions for wick polynomials in the free field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 31
EP  - 39
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_71_1_a3/
LA  - ru
ID  - TMF_1987_71_1_a3
ER  - 
%0 Journal Article
%A È. P. Osipov
%T Integral representations of the Schwinger functions for wick polynomials in the free field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 31-39
%V 71
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1987_71_1_a3/
%G ru
%F TMF_1987_71_1_a3
È. P. Osipov. Integral representations of the Schwinger functions for wick polynomials in the free field. Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 1, pp. 31-39. http://geodesic.mathdoc.fr/item/TMF_1987_71_1_a3/

[1] Osipov E. P., A constructive approach to the polynomial interaction in four-dimensional space-time, Preprint TF-108, Institut matematiki, Novosibirsk, 1979

[2] Osipov E. P., J. Math. Phys., 25:3 (1984), 633–648 | DOI | MR

[3] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Obobschennye funktsii. Vypusk 2, Fizmatgiz, M., 1958 | MR

[4] Constantinescu F., Thalheimer W., Commun. Math. Phys., 38 (1974), 299–316 | DOI | MR | Zbl

[5] Bourbaki N., Integration, Livre VI, chap. 1–9, Hermann, Paris, 1952–1969 | MR

[6] Björk G., Arkiv Math., 6 (1966), 351–407 | DOI | MR

[7] Jaffe A. M., Phys. Rev., 158 (1967), 1454–1461 | DOI

[8] Aizenman M., Commun. Math. Phys., 86 (1982), 1–48 | DOI | MR | Zbl

[9] Fröhlich J., Nucl. Phys., B200 [FS4] (1982), 281–296 | DOI | MR

[10] Sokal A. D., Ann. l'Inst. Henri Poincaré, A37 (1982), 317–398 | MR

[11] Hattori T., J. Math. Phys., 24:8 (1983), 2200–2203 | DOI | MR

[12] Albeverio S., Gallavotti G., Høegh-Krohn R., Commun. Math. Phys., 70 (1979), 187–192 | DOI | MR | Zbl

[13] Osipov E. P., On triviality of the $:\exp\lambda\varphi:_4$ quantum field theory in a finite volume, Preprint TF-103, Institut matematiki, Novosibirsk, 1979 ; Rept. Math. Phys., 20 (1984), 111–116 | MR | DOI | MR

[14] Gawedzki K., Kupiainen A., “Asymptotic freedom beyond perturbation theory”, Lectures given at Les Houches Summer School (August 1 – September 7, 1984); Preprint HUTMP 85/B177, Harvard University, Cambridge, 1985

[15] Saimon B., Model $P(\varphi)_2$ evklidovoi kvantovoi teorii polya, Mir, M., 1976

[16] Glimm Dzh., Dzhaffe A., Matematicheskie metody kvantovoi fiziki. Podkhod s ispolzovaniem funktsionalnykh integralov, Mir, M., 1984 | MR | Zbl

[17] Glimm J., Jaffe A., Fortschr. Phys., 21 (1973), 327–376 | DOI | MR

[18] Feldman J. S., Osterwalder K., Ann. Phys. (N. Y.), 97 (1976), 80–135 | DOI | MR

[19] Magnen J., Sénéor R., Ann. l'Inst. Henri Poincare, A24 (1976), 95–159 | MR

[20] Park Y. M., J. Math. Phys., 18 (1977), 354–366 | DOI | MR

[21] Symanzik K. W., A modified model of Euclidean quantum field theory, Report IMM-NYU 327, Courant Institute of Mathematical Sciences of New York University, New York, 1964 | MR

[22] Challifour J., Slinker S., Commun. Math. Phys., 43 (1975), 41–58 | DOI | MR | Zbl

[23] Yngvason J., Rept. Math. Phys., 13 (1978), 101–115 | DOI | MR | Zbl

[24] Boas R. P., Jr., Bull. Amer. Math. Soc., 45 (1939), 399–404 | DOI | MR

[25] Osipov E. P., TMF, 47:3 (1981), 307–314 | MR

[26] Osipov E. P., TMF, 48:2 (1981), 156–167 | MR

[27] Yngvason J., Commun. Math. Phys., 81 (1981), 401–418 | DOI | MR | Zbl

[28] Yngvason J., J. Math. Phys., 27 (1986), 311–320 | DOI | MR

[29] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR

[30] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[31] Iost R., Obschaya teoriya kvantovannykh polei, Mir, M., 1967 | MR