Integral representations of the Schwinger functions for wick polynomials in the free field
Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 1, pp. 31-39
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain integral representations of Schwinger functions for Wick polynomials in
the free field, in other words, we obtain Euclidean realizations of Wightman quantum
fields given by Wick polynomials in the free field. Using these Euclidean realizations,
a new non-perturbative mathematically rigorous approach to constructing quantum
field theory with the polynomial interaction in a finite volume of $d$-dimensional spacetime
$(d\geq 2)$ and without ultraviolet cut-offs is proposed. In particular, for imaginary
values of the coupling constant the generating functional of Schwinger functions is
constructed. The theory constructed by this method takes explicitly into account the
presence of ultraviolet divergences and its expansion in powers of the coupling constant
gives the renormalized series.
@article{TMF_1987_71_1_a3,
author = {\`E. P. Osipov},
title = {Integral representations of the {Schwinger} functions for wick polynomials in the free field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {31--39},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1987_71_1_a3/}
}
TY - JOUR AU - È. P. Osipov TI - Integral representations of the Schwinger functions for wick polynomials in the free field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1987 SP - 31 EP - 39 VL - 71 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1987_71_1_a3/ LA - ru ID - TMF_1987_71_1_a3 ER -
È. P. Osipov. Integral representations of the Schwinger functions for wick polynomials in the free field. Teoretičeskaâ i matematičeskaâ fizika, Tome 71 (1987) no. 1, pp. 31-39. http://geodesic.mathdoc.fr/item/TMF_1987_71_1_a3/