Inverse scattering method with variable spectral parameter
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 3, pp. 323-341 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the traditional scheme of the inverse scattering method the spectral parameter of the auxiliary linear problem is usually considered as a constant. The authors propose to consider it as a variable satisfying an over-determined system of differential equations which is determined by the auxiliary linear problem. Nonlinear equations arising in this approach include, as a rule, the explicit dependence on coordinates. Besides the known equations (equation of gravitation, Heisenberg equation in axial geometry etc.) the method makes it possible to construct a number of new integrable equations valuable for applications.
@article{TMF_1987_70_3_a0,
     author = {S. P. Burtsev and V. E. Zakharov and A. V. Mikhailov},
     title = {Inverse scattering method with variable spectral parameter},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--341},
     year = {1987},
     volume = {70},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_3_a0/}
}
TY  - JOUR
AU  - S. P. Burtsev
AU  - V. E. Zakharov
AU  - A. V. Mikhailov
TI  - Inverse scattering method with variable spectral parameter
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 323
EP  - 341
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_70_3_a0/
LA  - ru
ID  - TMF_1987_70_3_a0
ER  - 
%0 Journal Article
%A S. P. Burtsev
%A V. E. Zakharov
%A A. V. Mikhailov
%T Inverse scattering method with variable spectral parameter
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 323-341
%V 70
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1987_70_3_a0/
%G ru
%F TMF_1987_70_3_a0
S. P. Burtsev; V. E. Zakharov; A. V. Mikhailov. Inverse scattering method with variable spectral parameter. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 3, pp. 323-341. http://geodesic.mathdoc.fr/item/TMF_1987_70_3_a0/

[1] Zakharov V. E., Shabat A. B., Funkts. analiz i ego prilozh., 13:3 (1979), 13–22 | MR | Zbl

[2] Zakharov V. E., Mikhailov A. V., ZhETF, 74:6 (1978), 1953–1973 | MR

[3] Belinskii V. A., Zakharov V. E., ZhETF, 75:6(12) (1978), 1953–1971 ; Белинский В. А., Захаров В. Е., ЖЭТФ, 77:1 (1979), 3 | MR | MR

[4] Maison D., Phys. Rev. Lett., 41 (1978), 521–522 | DOI | MR

[5] Mikhailov A. V., Yaremchuk A. I., Nucl. Phys., B202 (1982), 508–522 | DOI | MR

[6] Calogero F., Degasperis A., Commun. Math. Phys., 63 (1978), 155–176 | DOI | MR | Zbl

[7] Alekseev G. A., Pisma v ZhETF, 32:4 (1980), 301–303

[8] Alekseev G. A., DAN SSSR, 283:3 (1985), 577–582 | MR

[9] Mikhailov A. V., Yaremchuk A. I., Pisma v ZhETF, 30:3 (1982), 78–81

[10] Lugovtsev B. B., Lugovtsev A. B., Dinamika sploshnoi sredy, no. 1, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1969, 195–206

[11] Budagov A. S., Takhtadzhyan L. A., DAN SSSR, 235:4 (1977), 805–808 | MR

[12] Ablowitz M. J., Kaup D. J., Newell A. C., J. Math. Phys., 15 (1974), 1852 | DOI | MR

[13] Zakharov V. E., Mikhailov A. V., Funkts. analiz i ego prilozh., 17:4 (1983), 1–6 | MR | Zbl

[14] Borovik A. E., Pisma v ZhETF, 28:10 (1978), 629–632

[15] Sklyanin E. K., Sovremennye problemy teorii magnetizma, Naukova dumka, K., 1986

[16] Mikhailov A. V., Phys. Lett., 92A:2 (1982), 51–55 | DOI | MR

[17] Kaup D. J., Prog. Theor. Phys., 54:2 (1975), 396–408 | DOI | MR | Zbl

[18] Kaup D. J., Newell A. C., J. Math. Phys., 19 (1978), 898–901 | DOI | MR