Covariant formalism of reductions of superconformal gauge theories to Poincaré supergravities
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 255-265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Covariant formalism of reduction from general gauge of extended supergroups to the off-shell Poincaré supergravities is considered. The formalism is based on a field system including both gauge and Goldstone superfields which parametrize the quotient space of broken symmetries and are connected with pure gauge degrees of freedom. Thus as a result of the choice of a gauge supergroup, stability subgroup, (super)group of base diffeomorphisms and structure of Goldstone superfields which form compensators of spontaneously broken symmetries, one completely determines the supermultiplel of physical and auxiliary fields which should be used to get the dynamical description of the system.
@article{TMF_1987_70_2_a9,
     author = {N. G. Pletnev and V. V. Serebryakov},
     title = {Covariant formalism of reductions of superconformal gauge theories to {Poincar\'e} supergravities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {255--265},
     year = {1987},
     volume = {70},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a9/}
}
TY  - JOUR
AU  - N. G. Pletnev
AU  - V. V. Serebryakov
TI  - Covariant formalism of reductions of superconformal gauge theories to Poincaré supergravities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 255
EP  - 265
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a9/
LA  - ru
ID  - TMF_1987_70_2_a9
ER  - 
%0 Journal Article
%A N. G. Pletnev
%A V. V. Serebryakov
%T Covariant formalism of reductions of superconformal gauge theories to Poincaré supergravities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 255-265
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a9/
%G ru
%F TMF_1987_70_2_a9
N. G. Pletnev; V. V. Serebryakov. Covariant formalism of reductions of superconformal gauge theories to Poincaré supergravities. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 255-265. http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a9/

[1] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 ; Коноплева Н. П., Попов В. Н., Калибровочные поля, Атомиздат, М., 1980 | MR | MR

[2] Kvantovaya teoriya kalibrovochnykh polei, Mir, M., 1977; Боголюбов Н. Н., Избр. тр., Наукова думка, К., 1970 | MR

[3] Goldstone J., Nuovo Cim., 19:1 (1961), 154–159 ; Higgs P., Phys. Lett., 12:2 (1964), 132–133 ; Phys. Rev., D145:4 (1966), 1156–1163 | DOI | MR | DOI | DOI | MR

[4] Utiyama R., Elementarnye chastitsy i kompensiruyuschie polya, Mir, M., 1964, 250–273

[5] Ivanenko D., Sardanashvily G., Phys. Rep., 94:1 (1983), 1–45 | DOI | MR

[6] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966 | MR

[7] Fradkin E. S., Tseytlin A. A., Phys. Rep., 119:4–5 (1985), 233–362 | DOI | MR

[8] Ivanov E. A., Niederle J., Phys. Rev., D25:4 (1982), 976–994 | MR

[9] Bergshoeff E., de Roo M., Van Holten T. W., de Wit B., Van Proeyen A., “Superspace and supergravity”, Proc. Nuffield Supergravity Workshop, eds. Hawking S. W., Roček M., Cambridge Univ. Press, 1981 ; Van Proeyen A., Superconformal tensor calculus in $N=1$ and $N=2$ supergravity, Preprint TH. 3579-CERN, CERN, Geneva, 1983 | MR | MR | Zbl

[10] Van Nieuwenhuizen P., Phys. Rep., 68:4 (1981), 189–398 | DOI | MR

[11] Kugo T., Uehara S., Nucl. Phys., B226:1 (1983), 49–92 | DOI | MR

[12] De Wit B., Van Holten T. W., Van Proeyen A., Nucl. Phys., B184:1 (1981), 77–108 | DOI

[13] Pletnev N. G., Serebryakov V. V., $\sigma$-modelnoe predstavlenie konformno-ploskikh $N=1$ supergravitatsii, Preprint TF-No 71(140), IM SO AN SSSR, Novosibirsk, 1984; Формализм редукций из калибровок конформных супергрупп к супергравитациям Пуанкаре, Препринт ТФ-No 7(145), ИМ СО АН СССР, Новосибирск, 1985

[14] Ogievetskii V. I., Sokachev E. S., YaF, 28:6(12) (1978), 1631–1639 ; Siegel W., Gates S., Nucl. Phys., B147:1–2 (1979), 77–105 ; B163:5 (1980), 519–545 | MR | DOI

[15] Ivanov E. A., Kapustnikov A. A., Phys. Lett., B143:4–6 (1984), 379–383 | DOI

[16] Ivanov E. A., Ogievetskii V. I., TMF, 25:2 (1975), 164–177 | MR

[17] Akulov V. P., Bandos I. A., Zima V. T., TMF, 56:1 (1983), 3–14 | MR

[18] Grimm R., Wess J., Zumino B., Nucl. Phys., B152:2 (1979), 255–266 ; Bagger J., Wess J., Supersymmetry and supergravity, Princeton University Press, 1983 | DOI | MR | MR | Zbl

[19] Howe P. S., Tucker P. W., Phys. Lett., B80:1–2 (1978), 138–140 | DOI | MR

[20] Brown M., Gates S., Jr., Nucl. Phys., B165:3 (1980), 445–461 ; Siegel W., Phys. Lett., B80:3 (1978), 224–227 | DOI | MR

[21] Sohnius M. F., West P. C., Phys. Lett., B105:5 (1981), 353–357 | DOI

[22] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948

[23] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, MGU, M., 1983 | MR

[24] Pletnev N. G., Serebryakov V. V., Teoretiko-gruppovye metody v fizike, Nauka, M., 1983 | MR | Zbl

[25] Ivanov E. A., Sorin A. S., J. Phys., A13:5 (1980), 1159–1170

[26] Borisov A. B., Ogievetskii V. I., TMF, 21:3 (1974), 329–342 | MR

[27] Howe P. S., Phys. Lett., B100:5 (1981), 389–392 | DOI | MR

[28] Bars J., Mac Dowell S. N., Phys. Lett., B129:3–4 (1983), 182–184 ; Kallosh P. E., Phys. Lett., B143:4; 5; 6 (1984), 373–378 | DOI | DOI | MR

[29] Galperin A., Ivanov E., Kalitzin S., Ogievetsky V., Sokachev E., Class Quant. Grav., 1:2 (1984), 469–489 | DOI | MR

[30] Grimm R., Sohnius M., Wess J., Nucl. Phys., B133:2 (1978), 275–284 | DOI | MR

[31] Fradkin E. S., Vasiliev M. A., Phys. Lett., B85:1 (1979), 47–51 ; De Wit B., Van Holten J. W., Van Proeyen A., Nucl. Phys., B167:1–2 (1980), 186–204 ; Castellani L., van Nieuwenhuizen P., Gates S. J., Jr., Phys. Rev., D22:10 (1980), 2364–2370 | DOI | MR | Zbl | DOI

[32] Fayet P., Nucl. Phys., B113:1 (1976), 135–155 ; Sohnius M. F., Nucl. Phys., B138:1 (1978), 109–121 ; Howe P. S., Stelle K. S., Townsend P. K., Nucl. Phys., B214:3 (1983), 519–531 | DOI | MR | DOI | MR | DOI | MR

[33] Roček M., Siegel W., Phys. Lett., B105:4 (1981), 275–277 ; Rivelles V. O., Taylor J. G., Phys. Lett., B121:1 (1983), 37–42 | DOI | DOI | MR

[34] Rogers A., Phys. Lett., B132:4; 5; 6 (1983), 333–336 ; Salam A., Sezgin E., Phys. Lett., B147:1; 2; 3 (1984), 47–51 | DOI | DOI | MR

[35] Sohnius M. F., Stelle K. S., West P. C., Nucl. Phys., B173:1 (1980), 127–153 | DOI | MR

[36] Gates S. J., Jr., Phys. D, D15:1–2 (1985), 270–277 | DOI | MR

[37] Sherk Dzh., Geometricheskie idei v fizike, Mir, M., 1983 | MR

[38] Rands B. L., Taylor J. G., J. Phys., A16:5 (1983), 1005–1018 ; Bufton G. R., Taylor J. G., J. Phys., A16:13 (1983), 3027–3035 ; Gard C. T., Davis P., Restuccia A., Taylor J. G., Phys. Lett., B144:1–2 (1984), 46–50; Class Quant Grav., 2:1 (1985), 35–41 | MR | DOI

[39] Bergshoeff E., de Roo M., de Wit B., van Nieuwenhuizen P., Nucl. Phys., B195:1 (1982), 97–136 | DOI | MR | Zbl

[40] Bergshoeff E., de Roo M., de Wit B., Nucl. Phys., B217:2 (1983), 489–530 ; Bergshoeff E., de Roo M., Phys. Lett., B138:1; 2; 3 (1984), 67–71 ; Van Holten J. W., Van Proeyen A., J. Phys., A15:5 (1982), 3763–3783 | DOI | DOI | MR

[41] Bedding S. P., Nucl. Phys., B236:2 (1984), 368–380 | DOI | MR

[42] Haag R., Lopuszanski J., Sohnius M., Nucl. Phys., B88:2 (1985), 257–274 | MR

[43] Pletnev N. G., Serebryakov V. V., Vakuumnye resheniya konformnoi supergravitatsii, Preprint TF-118, IM SO AN SSSR, Novosibirsk, 1981; Supergeometries associated with spontaneously broken superconformal symmetry, Preprint TP-N39(134), Inst. Math., Novosibirsk, 1983

[44] Gates S. J. Jr., Stelle K. S., West P. C., Nucl. Phys., B169:3–4 (1980), 347–364 | DOI | MR

[45] Cremmer E., Extended supergravities in component formalism, Preprint LPTENS 84/33, LPTENS, Paris, 1984 | MR