General representation of physical quantities in scheme-invariant perturbation theory and its optimization
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 226-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solution of the complete renormalization group equation for a dimensionless physical quantity in the renormalization scheme-invariant perturbation theory is given. On its basis we obtain the improved power-series expansions of this quantity in powers of its two-loop approximant and a certain function introduced in the paper. General and optimized representations of moments of nonsinglet structure functions are derived.
@article{TMF_1987_70_2_a7,
     author = {V. I. Vovk and S. I. Maximov},
     title = {General representation of physical quantities in scheme-invariant perturbation theory and its optimization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {226--233},
     year = {1987},
     volume = {70},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a7/}
}
TY  - JOUR
AU  - V. I. Vovk
AU  - S. I. Maximov
TI  - General representation of physical quantities in scheme-invariant perturbation theory and its optimization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 226
EP  - 233
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a7/
LA  - ru
ID  - TMF_1987_70_2_a7
ER  - 
%0 Journal Article
%A V. I. Vovk
%A S. I. Maximov
%T General representation of physical quantities in scheme-invariant perturbation theory and its optimization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 226-233
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a7/
%G ru
%F TMF_1987_70_2_a7
V. I. Vovk; S. I. Maximov. General representation of physical quantities in scheme-invariant perturbation theory and its optimization. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 226-233. http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a7/

[1] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Izd. 4-e, Nauka, M., 1984 | MR

[2] Vladimirov A. A., Shirkov D. V., UFN, 129:3 (1980), 407–441 | MR

[3] Vladimirov A. A., Shirkov D. V., “Metod renormgruppy v kvantovoi teorii polya”, XIV Mezhdunarodnaya shkola molodykh uchenykh po fizike vysokikh energii, OIYaI, Dubna, 1981, 101–149

[4] Peterman A., Phys. Rep., 53:3 (1979), 157–248 | DOI | MR

[5] Celmaster W., Gonsalves R., Phys. Rev., D20:6 (1979), 1420–1434 ; Celmaster W., Sivers D., Phys. Rev., D23:1 (1981), 227–254

[6] Stevenson P. W., Phys. Lett., 100B:1 (1981), 61–64 | DOI

[7] Grunberg G., Phys. Lett., 95B:1 (1980), 70–74 ; Phys. Rev., D29:10 (1984), 2315–2338 | DOI

[8] Brodsky S. J., Lepage P. G., Mackenzie P. B., Phys. Rev., D28:1 (1984), 228–235

[9] Nakkagawa H., Kawaguchi T., Progr. Theor. Phys., 68:2 (1982), 589–601 | DOI | MR

[10] Haruyama M., Progr. Theor. Phys., Suppl., 77 (1983), 77–98 | DOI

[11] Kubo J., Sakakibara S., Stevenson P. M., Phys. Rev., D29:8 (1984), 1682–1689 ; Kubo J., Sakakibara S., Z. Phys., C14:3 (1982), 345–353 | MR

[12] Dhar A., Phys. Lett., 128B:6 (1983), 407–410 ; Dhar A., Gupta V., Pramana, 21:3 (1983), 207–225 ; Phys. Rev., D29:12 (1984), 2822–2827 | DOI | DOI | MR | MR

[13] Kazakov D. I., Shirkov D. V., Quark-mass effects in scheme-invariant perturbation theory, JINR rapid communications N3-84, JINR, Dubna, 1984, C. 17–25.; Казаков Д. И., Ширков Д. В., ЯФ, 42:3(9) (1985), 768–776

[14] Duke D. W., Kimel J. D., Phys. Rev., D25:11 (1982), 2960–2974

[15] Maxwell C. J., Phys. Rev., D28:8 (1983), 2037–2046

[16] Vladimirov A. A., YaF, 31:4 (1980), 1083–1086

[17] Buras A. J., Rev. Mod. Phys., 52:1 (1980), 199–276 | DOI