Periodic intermediate long wave equation: The undressing method
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 202-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Periodic equation of two-layer liquid is studied by the method of dressing-down by means of formal Volterra operators. Infinite series of conservation laws is constructed by this method. Higher equations of two-layer liquid are written down in Hamiltonian form and it is shown that the conservation laws are preserved by higher equations. Involutiveness theorem is proved.
@article{TMF_1987_70_2_a4,
     author = {D. R. Lebedev and A. O. Radul},
     title = {Periodic intermediate long wave equation: {The} undressing method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {202--210},
     year = {1987},
     volume = {70},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a4/}
}
TY  - JOUR
AU  - D. R. Lebedev
AU  - A. O. Radul
TI  - Periodic intermediate long wave equation: The undressing method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 202
EP  - 210
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a4/
LA  - ru
ID  - TMF_1987_70_2_a4
ER  - 
%0 Journal Article
%A D. R. Lebedev
%A A. O. Radul
%T Periodic intermediate long wave equation: The undressing method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 202-210
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a4/
%G ru
%F TMF_1987_70_2_a4
D. R. Lebedev; A. O. Radul. Periodic intermediate long wave equation: The undressing method. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 202-210. http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a4/

[1] Chen H. H., Lee Y. C., Phys. Rev. Lett., 43 (1979), 264–266 | DOI | MR

[2] Joseph R. I., J. Phys. A, A10 (1977), L225–L227 | DOI | MR | Zbl

[3] Kubota T., Egre R. S., Dobbs L. D., J. Hydronautics, 12 (1978), 157–165 | DOI

[4] Joseph R. I., Egre R., J. Phys. A, A11 (1978), L97–L102 | DOI | Zbl

[5] Satsuma J., Ablowitz M. J., Kodama Y., Phys. Lett., 73A (1979), 283–286 | DOI | MR

[6] Kodama Y., Satsuma J., Ablowitz M. J., Phys. Rev. Lett., 46 (1981), 677–690 | DOI | MR

[7] Kodama Y., Ablowitz M. J., Satsuma J., J. Math. Phys., 23(4) (1982), 564–576 | DOI | MR | Zbl

[8] Radul A. O., DAN SSSR, 283:2 (1985), 303–308 | MR | Zbl

[9] Lebedev D. R., Radul A. O., Commun. Math. Phys., 91 (1983), 543–555 | DOI | MR | Zbl

[10] Ablowitz M. J., Fokas A. S., Satsuma J., Segur H., J. Phys. A: Math. Gen., 15 (1982), 781–786 | DOI | MR | Zbl

[11] Matveev V. B., Sall M. A., DAN SSSR, 261:3 (1981), 533–537 | MR | Zbl

[12] Bobenko A. I., Matveev V. B., Sall M. A., DAN SSSR, 265:6 (1982), 1357–1360 | MR | Zbl

[13] Drinfeld V. G., Sokolov V. V., Sovremennye problemy matematiki, 24, VINITI, M., 1984, 81–180 | MR

[14] Reiman A. G., Semenov-Tyan-Shanskii M. A., Zap. nauchn. semin. LOMI, 133, 1984, 197–211 | MR

[15] Radul A. O., Funkts. analiz i ego prilozh., 19:2 (1985), 85–87 | MR | Zbl

[16] Degasperis A., Santini P. M., Phys. Lett., 98A (1983), 240–244 | DOI | MR

[17] Degasperis A., Santini P. M., Ablowitz M. J., Nonlinear evolution equations assosiated with a Riemann - Hilbert scattering problem, Preprint INS 39, Clarkson College of Technology, N. Y., 1984 | MR

[18] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1967 | MR

[19] Gakhov F. D., Kraevye zadachi, Izd. 2-e, Nauka, M., 1963 | MR

[20] Manin Yu. I., Sovremennye problemy matematiki, 11, VINITI, M., 1978, 5–152 | MR

[21] Gelfand I. M., Dikii L. A., Semeistvo gamiltonovykh struktur, svyazannykh s integriruemymi nelineinymi differentsialnymi uravneniyami, Preprint IPM-136, IPM, M., 1978