Anderson localization in the nondiscrete maryland model
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 192-201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Schrödinger operator $H=H_0+V$, is considered where $V$ is an almost periodic potential of point interactions and the Hamiltonian $H_0$ is subject to certain conditions satisfied, in particular, by two- and three-dimensional operators of the form $H_0=-\Delta$ and $H_0=(i\nabla-\mathbf{A})^2$ $\mathbf{A}$ being a vector-potential of a uniform magnetic field. It is proved that under certain conditions of incommensurability for $V$, non-degenerate localised states of the operator $H$ are dense in forbidden bands of $H_0$; the expressions for corresponding eigen-functions are found.
@article{TMF_1987_70_2_a3,
     author = {V. A. Geiler and V. A. Margulis},
     title = {Anderson localization in the nondiscrete maryland model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {192--201},
     year = {1987},
     volume = {70},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a3/}
}
TY  - JOUR
AU  - V. A. Geiler
AU  - V. A. Margulis
TI  - Anderson localization in the nondiscrete maryland model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 192
EP  - 201
VL  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a3/
LA  - ru
ID  - TMF_1987_70_2_a3
ER  - 
%0 Journal Article
%A V. A. Geiler
%A V. A. Margulis
%T Anderson localization in the nondiscrete maryland model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 192-201
%V 70
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a3/
%G ru
%F TMF_1987_70_2_a3
V. A. Geiler; V. A. Margulis. Anderson localization in the nondiscrete maryland model. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 192-201. http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a3/

[1] Grempel D. R., Fishman S., Prange R. E., Phys. Rev. Lett., 49:11 (1982), 833–836 | DOI | MR

[2] Pastur L. A., Figotin A. L., Pisma v ZhETF, 37:12 (1983), 575–577

[3] Figotin A. L., Pastur L. A., Commun. Math. Phys., 95:4 (1984), 401–425 | DOI | MR | Zbl

[4] Simon B., Ann. Phys., 159:1 (1985), 157–183 | DOI | MR | Zbl

[5] Prange R. E., Phys. Rev., B23:9 (1981), 4802–4805 | DOI

[6] Berezin F. A., Faddeev L. D., DAN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[7] Albeverio S., Høegh-Krohn R., Physica, A124:1–3 (1984), 11–21 | DOI

[8] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[9] Saakyan Sh. N., DAN ArmSSR, 41:4 (1965), 193–198 | Zbl

[10] Krein M. G., Langer G. K., Funkts. analiz i ego prilozh., 5:3 (1971), 54–69 | MR | Zbl

[11] Baz A. I., Zeldovich Ya. B., Perelomov A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971 | Zbl

[12] Kochubei A. N., Funkts. analiz i ego prilozh., 16:2 (1982), 74–75 | MR

[13] Zorbas J., J. Math. Phys., 21:4 (1980), 840–847 | DOI | MR | Zbl

[14] Karpeshina Yu. E., Problemy matematicheskoi fiziki, no. 10, LGU, L., 1982, 137–163 | MR

[15] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965 | MR

[16] Zak J., Phys. Rev., A134:6 (1964), 1602–1611 | DOI | MR

[17] Dei M. M., Normirovannye lineinye prostranstva, Nauka, M., 1961 | MR

[18] Grossman A., Høegh-Krohn R., Mebkhout M., J. Math. Phys., 21:9 (1980), 2376–2385 | DOI | MR

[19] Geiler V. A., Margulis V. A., TMF, 58:3 (1984), 461–472 | MR

[20] Geiler V. A., Margulis V. A., TMF, 61:1 (1984), 140–149 | MR

[21] Levin H., Libby S. B., Pruisken A. M. M., Phys. Rev. Lett., 51:20 (1983), 1915–1918 | DOI

[22] Karpeshina Yu. E., TMF, 57:2 (1983), 304–313 | MR

[23] Grossman A., Høegh-Krohn R., Mebkhout M., Commun. Math. Phys., 77:1 (1980), 87–110 | DOI | MR