Anderson localization in the nondiscrete maryland model
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 192-201

Voir la notice de l'article provenant de la source Math-Net.Ru

The Schrödinger operator $H=H_0+V$, is considered where $V$ is an almost periodic potential of point interactions and the Hamiltonian $H_0$ is subject to certain conditions satisfied, in particular, by two- and three-dimensional operators of the form $H_0=-\Delta$ and $H_0=(i\nabla-\mathbf{A})^2$ $\mathbf{A}$ being a vector-potential of a uniform magnetic field. It is proved that under certain conditions of incommensurability for $V$, non-degenerate localised states of the operator $H$ are dense in forbidden bands of $H_0$; the expressions for corresponding eigen-functions are found.
@article{TMF_1987_70_2_a3,
     author = {V. A. Geiler and V. A. Margulis},
     title = {Anderson localization in the nondiscrete maryland model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {192--201},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a3/}
}
TY  - JOUR
AU  - V. A. Geiler
AU  - V. A. Margulis
TI  - Anderson localization in the nondiscrete maryland model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 192
EP  - 201
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a3/
LA  - ru
ID  - TMF_1987_70_2_a3
ER  - 
%0 Journal Article
%A V. A. Geiler
%A V. A. Margulis
%T Anderson localization in the nondiscrete maryland model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 192-201
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a3/
%G ru
%F TMF_1987_70_2_a3
V. A. Geiler; V. A. Margulis. Anderson localization in the nondiscrete maryland model. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 192-201. http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a3/