Principal singularities of the $S$ matrix for a~system of one-dimensional particles
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 266-277
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Explicit expressions are obtained for principal singularities of the scattering matrix
in one-dimensional particles system described by the Hamiltonian $\Delta /2 +\sum v(x_i-$ $-x_j)$. The conditions are found under which the principal singularities are free from diffraction effects.
			
            
            
            
          
        
      @article{TMF_1987_70_2_a10,
     author = {V. S. Buslaev and N. A. Kaliteevskii},
     title = {Principal singularities of the $S$ matrix for a~system of one-dimensional particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {266--277},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a10/}
}
                      
                      
                    TY - JOUR AU - V. S. Buslaev AU - N. A. Kaliteevskii TI - Principal singularities of the $S$ matrix for a~system of one-dimensional particles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1987 SP - 266 EP - 277 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a10/ LA - ru ID - TMF_1987_70_2_a10 ER -
%0 Journal Article %A V. S. Buslaev %A N. A. Kaliteevskii %T Principal singularities of the $S$ matrix for a~system of one-dimensional particles %J Teoretičeskaâ i matematičeskaâ fizika %D 1987 %P 266-277 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a10/ %G ru %F TMF_1987_70_2_a10
V. S. Buslaev; N. A. Kaliteevskii. Principal singularities of the $S$ matrix for a~system of one-dimensional particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 2, pp. 266-277. http://geodesic.mathdoc.fr/item/TMF_1987_70_2_a10/
