Inverse scattering problem in a class of nonlocal potentials. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 1, pp. 30-51
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Inverse scattering problem is formulated for the scalar Schrödinger equation on the semi-axis in a family of phase – equivalent (nonlocal, in general case) potentials. A new method of solving this problem is suggested which satisfies the solvability, unambiguity and constructivity conditions. Initial assumptions of the method are essentially based on physically general conditions of two-particle unitarity, orthogonality and completeness of the wave functions. It is shown that in the case of scattering data corresponding to the Riemann–Hilbert problem solvable in the class of rational functions, the principal integral equation of the method is reduced on a dense subclass of separable finite rank potentials to a system of algebraic second order equations. Extension of the method to the relativistic case is carried out. A number of related problems exactly solvable by the metod suggested is discussed.
@article{TMF_1987_70_1_a2,
     author = {V. M. Muzafarov},
     title = {Inverse scattering problem in a~class of nonlocal {potentials.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {30--51},
     year = {1987},
     volume = {70},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_1_a2/}
}
TY  - JOUR
AU  - V. M. Muzafarov
TI  - Inverse scattering problem in a class of nonlocal potentials. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 30
EP  - 51
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_70_1_a2/
LA  - ru
ID  - TMF_1987_70_1_a2
ER  - 
%0 Journal Article
%A V. M. Muzafarov
%T Inverse scattering problem in a class of nonlocal potentials. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 30-51
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1987_70_1_a2/
%G ru
%F TMF_1987_70_1_a2
V. M. Muzafarov. Inverse scattering problem in a class of nonlocal potentials. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 1, pp. 30-51. http://geodesic.mathdoc.fr/item/TMF_1987_70_1_a2/

[1] Agranovich Z. S., Marchenko V. A., Obratnaya zadacha teorii rasseyaniya, KhGU, Kharkov, 1960; Шадан К., Сабатье П., Обратные задачи в квантовой теории рассеяния, Мир, М., 1980 | MR

[2] Faddeev L. D., UMN, 14:4 (1959), 57–119 | MR | Zbl

[3] Newton R. G., “The Marchenko and Gelfand - Levitan methods in the inverse scattering problem in one and three dimensions”, Proc. of Gonf. on Inverse Scattering: Theory and Application, SIAM, Philadelphia, 1984 | MR | Zbl

[4] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[5] Newton R. G., J. Math. Phys., 21:7 (1980), 1698–1715 ; 22:10 (1981), 2191–2200 ; 23:4 (1982), 594–604 ; Faddeev L. D., Inverse Problem of Quantum Scattering Theory, V. II, Plenum, New York, 1976 | DOI | MR | Zbl | DOI | MR | DOI | MR

[6] Braun Dzh., Dzhekson A. D., Nuklon-nuklonnye vzaimodeistviya, Atomizdat, M., 1979

[7] Suzuki Y., Hecht K. T., Phys. Rev., C27:1 (1983), 299–311 ; De Swart J. J., Van Der Sanden W. A., Derks W., Nucl. Phys., A416 (1984), 299C–312C

[8] Simonov Yu. A., Nucl. Phys., A416 (1984), 109C–118C

[9] Lomon E. L., Nucl. Phys., A416 (1984), 613C–620C; Miller G. A., Quarks and nuclear properties, Preprint NIKHEF-K-85/16, Amsterdam, 1985 | MR

[10] Desplanques B., Donoghue J. F., Holstein B. R., Ann. Phys., 124:3 (1980), 449–487 | DOI

[11] Muzafarov V. M., Troitskii V. E., Trubnikov S. V., EChAYa, 14:5 (1983), 1112–1145

[12] Kobushkin A. P., Shelest V. P., EChAYa, 14:5 (1983), 1146–1192

[13] Bergström L., Fredriksson S., Rev. Mod. Phys., 52:4 (1980), 675–697 | DOI

[14] Zankel H., Plessas W., Haidenbauer J., Phys. Rev., C28:2 (1983), 538–541

[15] Picklesimer A., Tandy P. C., Thaler R. M., Wolfe D. H., Phys. Rev., C29:4 (1984), 1582–1585

[16] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1977 ; Pogorzelski W., Integral Equations and Their Applications, Pergamon Press, Oxford, 1966 | MR | MR | Zbl

[17] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970 | MR | Zbl

[18] Gakhov F. D., Kraevye zadachi, Nauka, M., 1972 | MR

[19] Nyuton R., Teoriya rasseyaniya voln i chastits, Mir, M., 1969 | MR

[20] Shirokov Yu. M., Nucl. Phys., B6:1 (1968), 159–163 | DOI | MR

[21] Newton R. G., J. Math. Phys., 23:12 (1982), 2257–2265 | DOI | MR | Zbl

[22] Muzafarov V. M., TMF, 64:2 (1985), 208–225 | MR

[23] Reiner M. J., Ann. Phys., 100:2 (1976), 131–148 | DOI | MR

[24] Stingl M., Sauer P. U., Ann. Phys., 94:2 (1975), 258–306 | DOI

[25] Pasquier J. Y., Pasquier R., Nucl. Phys., A277:2 (1977), 202–221 ; Ann. Phys., 111:2 (1978), 269–303 | DOI | MR | DOI

[26] Oryu S., Phys. Rev., C27:6 (1983), 2500–2514

[27] Lacombe M. et al., Phys. Rev., C21:3 (1980), 861–873

[28] Lomon E. L., “Effects of quark structure on NN scattering-relevance to current data and bag models”, Proc. of the Third Annual Indiana Nuclear Physics Workshop, Indiana Univ., Bloomington, 1983

[29] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 3. Teoriya rasseyaniya, Mir, M., 1982 | MR