Critical exponents in completely integrable models of quantum statistical physics
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 1, pp. 135-145

Voir la notice de l'article provenant de la source Math-Net.Ru

In one-dimensional quantum systems phase transition takes place at zero temperature. The general formula is obtained and investigated for the critical exponent describing the power decrease of zero-temperature correlators at long distances. This formula is valid for a great number of one-dimensional models including the Heisenberg model. The critical exponent is connected with fractional charge; it can also be expressed in terms of macroscopic characteristics of a model.
@article{TMF_1987_70_1_a10,
     author = {N. M. Bogolyubov and A. G. Izergin and V. E. Korepin},
     title = {Critical exponents in completely integrable models of quantum statistical physics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {135--145},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_1_a10/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - A. G. Izergin
AU  - V. E. Korepin
TI  - Critical exponents in completely integrable models of quantum statistical physics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 135
EP  - 145
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_70_1_a10/
LA  - ru
ID  - TMF_1987_70_1_a10
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A A. G. Izergin
%A V. E. Korepin
%T Critical exponents in completely integrable models of quantum statistical physics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 135-145
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1987_70_1_a10/
%G ru
%F TMF_1987_70_1_a10
N. M. Bogolyubov; A. G. Izergin; V. E. Korepin. Critical exponents in completely integrable models of quantum statistical physics. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 1, pp. 135-145. http://geodesic.mathdoc.fr/item/TMF_1987_70_1_a10/