Hidden symmetry of the Landau–Lifshitz equation, hierarchy of higher equations, and the dual equation for an asymmetric chiral field
Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 1, pp. 18-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A group-theoretical scheme is developed for constructing higher stationary Landau–Lifshitz equations as the Euler equations on the orbits of hidden symmetry algebra (the algebra of $su(2)$-valued functions on an elliptic curve). Duality between the Landau–Lifshitz equation and asymmetric $O(3)$-chiral field equation is established.
@article{TMF_1987_70_1_a1,
     author = {P. I. Holod},
     title = {Hidden symmetry of the {Landau{\textendash}Lifshitz} equation, hierarchy of higher equations, and the dual equation for an~asymmetric chiral field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {18--29},
     year = {1987},
     volume = {70},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1987_70_1_a1/}
}
TY  - JOUR
AU  - P. I. Holod
TI  - Hidden symmetry of the Landau–Lifshitz equation, hierarchy of higher equations, and the dual equation for an asymmetric chiral field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1987
SP  - 18
EP  - 29
VL  - 70
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1987_70_1_a1/
LA  - ru
ID  - TMF_1987_70_1_a1
ER  - 
%0 Journal Article
%A P. I. Holod
%T Hidden symmetry of the Landau–Lifshitz equation, hierarchy of higher equations, and the dual equation for an asymmetric chiral field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1987
%P 18-29
%V 70
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1987_70_1_a1/
%G ru
%F TMF_1987_70_1_a1
P. I. Holod. Hidden symmetry of the Landau–Lifshitz equation, hierarchy of higher equations, and the dual equation for an asymmetric chiral field. Teoretičeskaâ i matematičeskaâ fizika, Tome 70 (1987) no. 1, pp. 18-29. http://geodesic.mathdoc.fr/item/TMF_1987_70_1_a1/

[1] Landau L. D., Lifshits E. M., L. D. Landau. Sobranie trudov, T. 1, Nauka, M., 1969, 128–140 | MR

[2] Sklyanin E. K., On complete integrability of the Landau - Lifshitz equation, Preprint E-3-79, LOMI, L., 1979 | MR

[3] Borovik A. E., Robuk V. N., TMF, 46:3 (1981), 371–381 | MR

[4] Mikhailov A. V., Phys. Lett., 92A:2 (1982), 51–55 | DOI | MR

[5] Bobenko A. I., Zap. nauchn. semin. LOMI, 123, 1983, 58–66 | MR | Zbl

[6] Borisov A. B., FMM, 55:2 (1983), 230–234

[7] Bikbaev R. F., Bobenko A. I., Its A. R., DAN SSSR, 272:6 (1983), 1293–1298 | MR | Zbl

[8] Bobenko A. I., Tochnoe integrirovanie nelineinykh uravnenii metodom obratnoi zadachi s parametrom na ellipticheskoi krivoi, Dis. kand. fiz.-matem. nauk, LOMI, L., 1985

[9] Neumann C., Z. für reine und angew. Math., 56 (1859), 46–63 | DOI | MR | Zbl

[10] Steklov V. A., O dvizhenii tverdogo tela v zhidkosti. Zap. Kharkovskogo universiteta, KhGU, Kharkov, 1893

[11] Veselov A. P., DAN SSSR, 270:5 (1983), 1094–1097 | MR

[12] Golod P. I., Integriruemye gamiltonovy sistemy na orbitakh affinnykh algebr Li i periodicheskaya zadacha dlya modifitsirovannykh uravnenii Kortevega - de Friza, Preprint ITF-82-144R, ITF, K., 1982

[13] Reiman A. G., Zap. nauchn. semin. LOMI, 131, 1983, 118–127 | MR | Zbl

[14] Flaschka H., Newell A., Ratiu T., Physica, 10D (1984), 449–512

[15] Baryakhtar V. G., Belokolos E. D., Golod P. I., Odnomernye magnitnye struktury i vysshie uravneniya Landau - Lifshitsa, Preprint ITF-84-128R, ITF, K., 1984

[16] Holod P. I., Nonlinear and Turbulent Processes in Physics, Proc. of the Second International Workshop, ed. R. Z. Sagdeev, Harwood Acad. Publ., New-York, 1984, 1361–1367 | MR

[17] Cherednik I. V., YaF, 33:1 (1981), 278–282

[18] Manakov S. V., Funkts. analiz i ego prilozh., 10:4 (1976), 93–94 | MR | Zbl

[19] Reiman A. G., Semenov-Tyan-Shanskii M. A., Frenkel I. E., DAN SSSR, 274:4 (1979), 802–805 | MR

[20] Adler M., Inventiones Math., 34 (1979), 196–338 | MR

[21] Drinfeld V. G., Sokolov V. V., Sovremennye problemy matem., Itogi nauki i tekhniki VINITI AN SSSR, 24, VINITI, M., 1984, 81–180 | MR

[22] Novikov S. P., Shmeltser I., Funkts. analiz i ego prilozh., 15:3 (1981), 54–66 | MR

[23] Eleonskii V. M., Kirova N. N., Kulagin N. E., ZhETF, 79:1 (1980), 321–332

[24] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[25] Novikov S. P., UMN, 37:5 (1982), 3–49 | MR | Zbl

[26] Faddeev L. D., Reshetikhin N. Yu., Problemy kvantovoi teorii polya, OIYaI, Dubna, 1984, 37–55 | MR