Generalized Darboux–Crum–Krein transformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 3, pp. 475-479 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Expressions are obtained by means of which it is possible to transform a known solution $\varphi_1$ of the Schrödinger equation with potential $V_1$ into a solution $\varphi_2$ with corresponding potential $V_2$ when the Schrödinger equation contains not only a nuclear potential $V$ but also a centrifugal and a Coulomb potential. In special cases, these transformations yield the formulas of a Darboux–Crum–Krein transformation, and also formulas obtained by other authors.
@article{TMF_1986_69_3_a12,
     author = {I. V. Poplavskii},
     title = {Generalized {Darboux{\textendash}Crum{\textendash}Krein} transformations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {475--479},
     year = {1986},
     volume = {69},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_69_3_a12/}
}
TY  - JOUR
AU  - I. V. Poplavskii
TI  - Generalized Darboux–Crum–Krein transformations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 475
EP  - 479
VL  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_69_3_a12/
LA  - ru
ID  - TMF_1986_69_3_a12
ER  - 
%0 Journal Article
%A I. V. Poplavskii
%T Generalized Darboux–Crum–Krein transformations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 475-479
%V 69
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1986_69_3_a12/
%G ru
%F TMF_1986_69_3_a12
I. V. Poplavskii. Generalized Darboux–Crum–Krein transformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 3, pp. 475-479. http://geodesic.mathdoc.fr/item/TMF_1986_69_3_a12/

[1] Shadan K., Sabate P., Obratnye zadachi v kvantovoi teorii rasseyaniya, Mir, M., 1980 | MR

[2] Zakharev B. N., Suzko A. A., Potentsialy i kvantovoe rasseyanie, Energoatomizdat, M., 1985 | MR

[3] Popushoi M. N., UFZh, 29:1 (1984), 24–29 | MR

[4] Poplavskii I. V., UFZh, 29:8 (1984), 1148–1153 | MR

[5] Popushoi M. N., TMF, 63:3 (1985), 340–346 | MR

[6] Darboux Gr., Comptes Rendues, 94 (1882), 1456–1459

[7] Crum M. M., Quart. J. Math., 6:2 (1955), 121–128 | DOI | MR

[8] Krein M. G., DAN SSSR, 113:5 (1957), 970–973 | MR | Zbl

[9] Faddeev L. D., UMN, 14:4 (1959), 57–119 | MR

[10] Agranovich Z. S., Marchenko V. A., Obratnaya zadacha teorii rasseyaniya, KhGU, Kharkov, 1960

[11] Zakharev B. N. i dr., EChAYa, 13:6 (1982), 1284–1335 | MR

[12] Rudyak B. V. et. al., Phys. Scripta, 29:3 (1984), 515–517 | DOI | MR | Zbl

[13] Suzko A. A., Tezisy 9-i Evropeiskoi konferentsii po probleme neskolkikh tel v fizike, TGU, Tbilisi, 1984, 56–57

[14] Popushoi M. N., TMF, 69:3 (1986), 466–474

[15] Bogdanov I. V., Demkov Yu. N., ZhETF, 82:6 (1982), 1798–1806 | MR

[16] Abramov D. I., TMF, 58:2 (1984), 244–253 | MR

[17] Zakharev B. N., Rudyak B. V., Obratnaya zadacha pri $aE+bl(l+1)=\mathrm{const}$ i novye tochno reshaemye modeli, Preprint R4-84-759, OIYaI, Dubna, 1984