Potential of Gibbs measure corresponding to steady solution of the BBGKY hierarchy for nonfinite interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 2, pp. 259-272
For a non-negative interaction and Gibbs measure with non-negative finiteparticle potential, the problem of the connection between steady solutions and first integrals is solved.
@article{TMF_1986_69_2_a9,
author = {I. Yu. Musina},
title = {Potential of {Gibbs} measure corresponding to steady solution of the {BBGKY} hierarchy for nonfinite interaction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {259--272},
year = {1986},
volume = {69},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a9/}
}
TY - JOUR AU - I. Yu. Musina TI - Potential of Gibbs measure corresponding to steady solution of the BBGKY hierarchy for nonfinite interaction JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1986 SP - 259 EP - 272 VL - 69 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a9/ LA - ru ID - TMF_1986_69_2_a9 ER -
I. Yu. Musina. Potential of Gibbs measure corresponding to steady solution of the BBGKY hierarchy for nonfinite interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 2, pp. 259-272. http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a9/
[1] Gurevich B. M., Suhov Ju. M., Commun. Math. Phys., 49 (1976), 63–96 | DOI | MR
[2] Chulaevskii V. A., Funkts. analiz i ego prilozh., 17:1 (1983), 53–62 | MR
[3] Sukhov Yu. M., TMF, 55:1 (1983), 78–87 | MR
[4] Gurevich B. M., UMN, 41:2 (1986), 193–194 | MR
[5] Lenard A., Commun. Math. Phys., 30 (1973), 35–44 | DOI | MR
[6] Shvarts L., Analiz, Mir, M., 1972