Debye screening in spatially inhomogeneous systems of charged particles. I. Model of spherical insulator
Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 2, pp. 245-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a medium with permittivity $\varepsilon$ there is a spherical insulator $\Omega_0$ of radius $R_0$ with permittivity $\varepsilon_0<\varepsilon$. A system of ions represented by charged impermeable spheres of radius $r_0$ whose distribution around the sphere $\Omega_0$ satisfies the Brydges–Federbush neutrality condition is considered. Initially, the system is in a finite volume $\Lambda$ (sphere of radius $R\gg R_0$), and the interaction satisfies a Dirichlet condition on $\partial\Lambda$. For sufficiently high values of the temperature convergence of the cluster expansions and existence of the distribution functions in the limit $R\to\infty$ ($\Lambda\nearrow\mathbb R^3$) are proved. It is established that there is exponential clustering of the distribution functions along the radial directions of the sphere $\Omega_0$ with a power-law decrease along the surface $\partial\Omega_0$.
@article{TMF_1986_69_2_a8,
     author = {A. I. Pilyavskii and A. L. Rebenko},
     title = {Debye screening in spatially inhomogeneous systems of charged particles. {I.~Model} of spherical insulator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {245--258},
     year = {1986},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a8/}
}
TY  - JOUR
AU  - A. I. Pilyavskii
AU  - A. L. Rebenko
TI  - Debye screening in spatially inhomogeneous systems of charged particles. I. Model of spherical insulator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 245
EP  - 258
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a8/
LA  - ru
ID  - TMF_1986_69_2_a8
ER  - 
%0 Journal Article
%A A. I. Pilyavskii
%A A. L. Rebenko
%T Debye screening in spatially inhomogeneous systems of charged particles. I. Model of spherical insulator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 245-258
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a8/
%G ru
%F TMF_1986_69_2_a8
A. I. Pilyavskii; A. L. Rebenko. Debye screening in spatially inhomogeneous systems of charged particles. I. Model of spherical insulator. Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 2, pp. 245-258. http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a8/

[1] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR

[2] Yukhnovskii I. R., Golovko M. F., Statisticheskaya teoriya klassicheskikh ravnovesnykh sistem, Naukova dumka, Kiev, 1980 | MR

[3] Balesku R., Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, t. 1, Mir, M., 1978 | MR

[4] Rebenko A. L., The distribution functions of a double electric layer of a concentrated electrolyte near a charged membrane, Preprint ITP-80-43E, ITP, Kiev, 1980

[5] Brydges D., Commun. Math. Phys., 58 (1978), 313–350 | DOI | MR

[6] Brydges D., Federbush P., Commun. Math. Phys., 73 (1980), 197–246 | DOI | MR

[7] Imbrie T. Z., Commun. Math. Phys., 87 (1983), 515–565 | DOI | MR

[8] Rebenko A. L., DAN SSSR, 267:6 (1982), 1350–1352 | MR

[9] Rebenko A. L., TMF, 53:3 (1982), 429–443 | MR

[10] Park Y. M., Commun. Math. Phys., 70 (1979), 161–167 | DOI | MR

[11] Rebenko A. L., Pilyavskii A. I., “Klasternye razlozheniya dlya funktsii raspredeleniya prostranstvenno-neodnorodnoi sistemy zaryazhennykh chastits. Sfericheskaya poverkhnost razdela”, Tezisy mezhd. simp. po izbr. probl. stat. mekh. (Dubna, avgust 1984), Atomizdat, M., 1984

[12] Rebenko A. L., Pilyavsky A. I., Debye screening in the space-inhomogeneous systems, Preprint ITP-84-167E, ITP, Kiev, 1984

[13] Federbush P., Kennedy T., Commun. Math. Phys., 102 (1985), 361–423 | DOI | MR | Zbl

[14] Battle G., Federbush P., Lett. Math. Phys., 8 (1984), 55–57 | DOI | MR

[15] Battle G., Commun. Math. Phys., 94 (1984), 133–139 | DOI | MR

[16] Grinberg G. A., Izbrannye voprosy matematicheskoi teorii elektricheskikh i magnitnykh yavlenii, Izd-vo AN SSSR, M.–L., 1948

[17] Panofsky W., Phyllips M., Classical electricity and magnetism, Addison - Wesley Pub. Comp. Inc., Cambridge | MR

[18] Brydges D., Federbush P., J. Math. Phys., 19 (1978), 2064 | DOI | MR

[19] Tegeback R., Usenko A. S., Yakimenko I. P., Zagorodny A. G., J. Plasma Physics, 18 (1977), 113–125 | DOI

[20] Rebenko A. L., Issledovanie kvantovopolevykh i klassicheskikh statisticheskikh sistem metodami evklidovoi teorii polya, Avtoref. doktorskoi dissertatsii, ITF, Kiev, 1984

[21] Jancovici B., J. Stat. Phys., 28 (1982), 43–65 | DOI | MR