Action for “generalized” superstring with torsion
Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 2, pp. 214-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The action is formulated for the $N=1$ locally supersymmetric nonlinear two-dimensional sigma model with torsion. This action can be regarded either as the classical action for a Fermi string propagating in a curved space-time with torsion or as the effective action for massless excitations of a superstring corresponding to the metric and an antisymmetric tensor in the Neveu–Schwarz–Ramond model.
@article{TMF_1986_69_2_a5,
     author = {S. V. Ketov},
     title = {Action for {\textquotedblleft}generalized{\textquotedblright} superstring with torsion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {214--218},
     year = {1986},
     volume = {69},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a5/}
}
TY  - JOUR
AU  - S. V. Ketov
TI  - Action for “generalized” superstring with torsion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 214
EP  - 218
VL  - 69
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a5/
LA  - ru
ID  - TMF_1986_69_2_a5
ER  - 
%0 Journal Article
%A S. V. Ketov
%T Action for “generalized” superstring with torsion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 214-218
%V 69
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a5/
%G ru
%F TMF_1986_69_2_a5
S. V. Ketov. Action for “generalized” superstring with torsion. Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 2, pp. 214-218. http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a5/

[1] Schwarz J. H., Phys. Rep., 89C:3 (1982), 223–322 | DOI | MR | Zbl

[2] Brink L., Scherk J., Schwarz J. H., Nucl. Phys., B121:1 (1977), 77–92 | DOI | MR

[3] Gliozzi F., Scherk J., Olive D., Nucl. Phys., B122:2 (1977), 253–290 | DOI | MR

[4] Green M. B., Schwarz J. H., Anomaly cancellations in $D=10$ gauge theory require $SO(32)$, Preprint CALT-68-1182, California, USA, 1984 | MR

[5] Thierry-Mieg J., Remarks concerning the $E_8\times E_8$ and $D_{16}$ string theories, Preprint LBL-18464, California, USA, 1984 | MR

[6] Gross D. J., Harvey J. A., Martinec E., Rohm R., Phys. Rev. Lett., 54 (1985), 502–505 | DOI | MR

[7] Candelas P., Horowitz G. T., Strominger A., Witten E., Vacuum configurations for superstrings, Preprint NSF-ITP-84-170, California, USA, 1984 | MR

[8] Nilles H. P., Phys. Rep., 110C:1 (1985), 1–162

[9] Witten E., Dimensional reduction of superstring models, Princeton Preprint, New-Jersey, USA, 1985 | MR

[10] Fradkin E. S., Tseytlin A. A., Phys. Lett., 160B:1–3 (1985), 69–76 | DOI

[11] Callan C. G., Friedan D., Martinec E., Perry M. J., Nucl. Phys., B262:4 (1985), 593–609 | DOI | MR

[12] Deser S., Zumino B., Phys. Lett., 65B:4 (1976), 369–373 | DOI | MR

[13] Brink L., Di Vecchia P., Howe P., Phys. Lett., 65B:5 (1976), 471–474 | DOI

[14] Wess J., Zumino B., Phys. Lett., 37B:1 (1971), 95–97 | DOI | MR

[15] Witten E., Commun. Math. Phys., 92 (1984), 455–472 | DOI | MR | Zbl

[16] Braaten E., Curtright T. L., Zachos C. K., Torsion and geometrostasis in nonlinear sigma models, Preprint UFTP-85-01/ANL-HEP-PR-85-03, Florida, USA, 1985 ; Curtright T. L., Zachos C. K., Phys. Rev. Lett., 53 (1984), 1799–1802 | MR | DOI | MR

[17] Polyakov A., Wiegmann P., Phys. Lett., 131B:2 (1983), 121–125 ; Phys. Lett., 141B (1984), 223–227 | DOI | MR | DOI | MR

[18] Howe P., Sierra G., Phys. Lett., 148B:6 (1984), 451–455 | DOI | MR

[19] Gates S. J. Jr., Hull C. M., Rocek M., Nucl. Phys., B248:1 (1984), 157–186 | DOI | MR

[20] van Nieuwenhuizen P., Phys. Rep., 68C:3 (1981), 189–398 | MR

[21] Polyakov A., Phys. Lett., 103B:3 (1981), 207–210 ; 211–213 | DOI | MR | MR