Modulation instability and periodic solutions of the nonlinear Schr\"odinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 2, pp. 189-194

Voir la notice de l'article provenant de la source Math-Net.Ru

A very simple exact analytic solution of the nonlinear Schrödinger equation is found in the class of periodic solutions. It describes the time evolution of a wave with constant amplitude on which a small periodic perturbation is superimposed. Expressions are obtained for the evolution of the spectrum of this solution, and these expressions are analyzed qualitatively. It is shown that there exists a certain class of periodic solutions for which the real and imaginary parts are linearly related, and an example of a one-parameter family of such solutions is given.
@article{TMF_1986_69_2_a2,
     author = {N. N. Akhmediev and V. I. Korneev},
     title = {Modulation instability and periodic solutions of the nonlinear {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {189--194},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a2/}
}
TY  - JOUR
AU  - N. N. Akhmediev
AU  - V. I. Korneev
TI  - Modulation instability and periodic solutions of the nonlinear Schr\"odinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 189
EP  - 194
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a2/
LA  - ru
ID  - TMF_1986_69_2_a2
ER  - 
%0 Journal Article
%A N. N. Akhmediev
%A V. I. Korneev
%T Modulation instability and periodic solutions of the nonlinear Schr\"odinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 189-194
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a2/
%G ru
%F TMF_1986_69_2_a2
N. N. Akhmediev; V. I. Korneev. Modulation instability and periodic solutions of the nonlinear Schr\"odinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 2, pp. 189-194. http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a2/