Unusual analytic properties of some lattice models: Complement of Lee–Yang theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 2, pp. 273-278
Cet article a éte moissonné depuis la source Math-Net.Ru
Problems of the analytic dependence of the free energy of “Czech” models on the interaction parameters are studied. It is shown that the free energy is an analytic function although the complex zeros of the partition function have real values of the interaction parameters as their limit points.
@article{TMF_1986_69_2_a10,
author = {S. B. Shlosman},
title = {Unusual analytic properties of some lattice models: {Complement} of {Lee{\textendash}Yang} theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {273--278},
year = {1986},
volume = {69},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a10/}
}
S. B. Shlosman. Unusual analytic properties of some lattice models: Complement of Lee–Yang theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 2, pp. 273-278. http://geodesic.mathdoc.fr/item/TMF_1986_69_2_a10/
[1] Shlosman S. B., TMF, 66:3 (1986), 430–444 | MR
[2] Dobrushin R. L., Shlosman S. B., “Completely analytical Gibbs fields”, Statistical mechanics and dynamical systems, Burkhouser, N. Y., 1985 | MR
[3] Malyshev V. A., UMN, 35:2 (1980), 3–53 | MR
[4] Malyshev V. A., “Vozmuschenie gibbsovskikh sluchainykh polei”, Mnogokomponentnye sluchainye sistemy, Nauka, M., 1978 | MR | Zbl