Derivation of an expression for a Hamiltonian functional integral in theories with first and second class constraints
Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 1, pp. 115-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Hamiltonian functional integral in theories with first and second class constraints (both stationary and nonstationary) is derived in a simple and consistent manner. The gauge conditions need not be in involution and may contain the time explicitly. In contrast to other studies, much attention is devoted to the proof of the Hamiltonicity of the theory on the physical submanifold $\Gamma^*$ of the phase space $\Gamma$. It is shown that $\Delta^{-1}$, where $\Delta$ is the Faddeev–Popov determinant, is simply the volume element of the subspace $\Bar\Gamma=\Gamma\backslash\Gamma^*$ in noncanonical coordinates determined by the constraints and gauge conditions. It is proved that the expression for the functional integral is invariant under finite transformations of the gauge conditions.
@article{TMF_1986_69_1_a9,
     author = {V. V. Nesterenko},
     title = {Derivation of an~expression for {a~Hamiltonian} functional integral in theories with first and second class constraints},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {115--127},
     year = {1986},
     volume = {69},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a9/}
}
TY  - JOUR
AU  - V. V. Nesterenko
TI  - Derivation of an expression for a Hamiltonian functional integral in theories with first and second class constraints
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 115
EP  - 127
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a9/
LA  - ru
ID  - TMF_1986_69_1_a9
ER  - 
%0 Journal Article
%A V. V. Nesterenko
%T Derivation of an expression for a Hamiltonian functional integral in theories with first and second class constraints
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 115-127
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a9/
%G ru
%F TMF_1986_69_1_a9
V. V. Nesterenko. Derivation of an expression for a Hamiltonian functional integral in theories with first and second class constraints. Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 1, pp. 115-127. http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a9/

[1] Faddeev L. D., TMF, 1:1 (1969), 3–18 | MR | Zbl

[2] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR

[3] Kvantovaya teoriya kalibrovochnykh polei, Sb. statei, Mir, M., 1977

[4] Faddeev L. D., Popov V. N., UFN, 111:3 (1973), 427–450 | DOI | MR

[5] Dirak P., “Lektsii po kvantovoi mekhanike”, Printsipy kvantovoi mekhaniki, Nauka, M., 1979 | MR

[6] Mukunda N., Phys. Scripta, 21:6 (1980), 801–804 | DOI | MR | Zbl

[7] Barbashov B. M., Nesterenko V. V., Chervyakov A. M., TMF, 63:1 (1985), 88–96 | MR

[8] Senjanovic P., Ann. Phys., 100:1/2 (1976), 227–261 | DOI

[9] Ditsas P., Canonical path integral quantization of gauge systems, Preprint TH. 4042/84, CERN, Geneva, 1984 ; Ann. of Phys., 167:1 (1986), 36–61 | MR | DOI

[10] Schouten J. A., v. d. Kulk W., Pfaff's problem and its generalizations, Clarendon Press, Oxford, 1949 | MR | Zbl

[11] Maskawa T., Nakajima H., Progr. Theor. Phys., 56:4 (1976), 1295–1309 | DOI | MR | Zbl

[12] Shanmugadhasan S., J. Math. Phys., 14:6 (1973), 677–687 | DOI | Zbl

[13] Levi-Chivita T., Amaldi U., Kurs teoreticheskoi mekhaniki, t. 1, 4, 2, IL, M., 1951 | MR

[14] Popov V. N., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[15] Prokhorov L. V., EChAYa, 13:5 (1982), 1094–1156 | MR

[16] Schulman L. S., Techniques and applications of path integration, John Wiley and Sons, New York, 1981 | MR | Zbl

[17] Gervais J., Jevicki A., Nucl. Phys., B110:1 (1976), 93–112 | DOI | MR