Critical properties of a system near an angle boundary
Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 1, pp. 149-151
Cet article a éte moissonné depuis la source Math-Net.Ru
The hypothesis of conformal invariance is used to obtain a universal dependence of the critical exponents of a two-dimensional system on the angle formed by intersecting boundary lines.
@article{TMF_1986_69_1_a12,
author = {R. Z. Bariev},
title = {Critical properties of a~system near an~angle boundary},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {149--151},
year = {1986},
volume = {69},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a12/}
}
R. Z. Bariev. Critical properties of a system near an angle boundary. Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 1, pp. 149-151. http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a12/
[1] Cardy J. L., J. Phys., 16:15 (1983), 3617–3628 | MR
[2] Guttmann A. J., Torrie G. M., J. Phys. A, 17:18 (1984), 3539–3552 | DOI | MR
[3] Barber M. N., Peschel I., Pearce P. A., J. Stat. Phys., 37:5–6 (1984), 497–527 | DOI | MR
[4] Polyakov A. M., Pisma v ZhETF, 12:11 (1970), 538–541
[5] Polyakov A. M., ZhETF, 66:1 (1974), 23–42 | MR
[6] Gardy J. L., J. Phys. A, 17:7 (1984), 385–387 | DOI | MR
[7] Gardy J. L., J. Phys. A, 17:8 (1984), 961–964 | DOI | MR
[8] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., Nucl. Phys. B, 1984, no. 2, 333–380 | DOI | MR | Zbl
[9] Bariev R. Z., TMF, 42:2 (1980), 262–270
[10] Yang C. N., Phys. Rev., 85:2 (1952), 808–816 | DOI | MR | Zbl