Smoluchowski diffusion in an infinite system at low density: Local time evolution
Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 1, pp. 128-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The evolution operator of the Bogolyubov–Strel'tsova hierarchy is constructed as the thermodynamic limit of the semigroup that determines the evolution in the grand canonical ensemble of the system in finite volume.
@article{TMF_1986_69_1_a10,
     author = {V. I. Skripnik},
     title = {Smoluchowski diffusion in an~infinite system at low density: {Local} time evolution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {128--141},
     year = {1986},
     volume = {69},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a10/}
}
TY  - JOUR
AU  - V. I. Skripnik
TI  - Smoluchowski diffusion in an infinite system at low density: Local time evolution
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 128
EP  - 141
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a10/
LA  - ru
ID  - TMF_1986_69_1_a10
ER  - 
%0 Journal Article
%A V. I. Skripnik
%T Smoluchowski diffusion in an infinite system at low density: Local time evolution
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 128-141
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a10/
%G ru
%F TMF_1986_69_1_a10
V. I. Skripnik. Smoluchowski diffusion in an infinite system at low density: Local time evolution. Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 1, pp. 128-141. http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a10/

[1] Chandrasekar S., Stokhasticheskie problemy v fizike i astronomii, IL, M., 1949

[2] Yaglom A. M., Matem. sb., 24:3 (1949), 457–492 | MR | Zbl

[3] Lang R., Z. Wahr. Geb., 39 (1977), 277–299 ; Fritz J., Preprint No 15, Math. Inst. Budapest., Hung. Acad. Sci., 1984 | DOI | MR | Zbl

[4] Streltsova E. A., UMZh, XI:1 (1959), 83–92

[5] Skripnik V. I., TMF, 58:3 (1984), 398–420 | MR

[6] Petrina D. Ya., Vidybida A. K., Tr. MI AN SSSR, 136, 1975, 370–378 ; Петрина Д. Я., ТМФ, 38:2 (1979), 230–250 ; Петрина Д. Я., Герасименко В. И., УМН, 38:5 (1983), 3–58 ; Петрина Д. Я., Герасименко В. И., Малышев П. В., Математические основы классической статистической механики, Наукова думка, К., 1985 | MR | MR | MR | Zbl | MR | Zbl

[7] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971