Thermal properties of quantum electrodynamics in 2+1~dimensions and confinement
Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 1, pp. 25-39
Voir la notice de l'article provenant de la source Math-Net.Ru
The thermal properties of quantum electrodynamics in 2+1 dimensions are studied. The infrared divergences of the thermodynamic variables resulting from the long-range interaction that ensures confinement are eliminated by using a skeleton perturbation theory that takes into account screening. This leads to the appearance of a nonanalyticity
of the form $g^2\ln g^2$. The polarization operator, thermodynamic potential, and fermion self-energy are investigated. The obtained results are used to discuss the possible absence of deconfinement.
@article{TMF_1986_69_1_a1,
author = {M. Yu. Novikov and A. S. Sorin and V. Yu. Tseitlin and V. P. Shelest},
title = {Thermal properties of quantum electrodynamics in 2+1~dimensions and confinement},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {25--39},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a1/}
}
TY - JOUR AU - M. Yu. Novikov AU - A. S. Sorin AU - V. Yu. Tseitlin AU - V. P. Shelest TI - Thermal properties of quantum electrodynamics in 2+1~dimensions and confinement JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1986 SP - 25 EP - 39 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a1/ LA - ru ID - TMF_1986_69_1_a1 ER -
%0 Journal Article %A M. Yu. Novikov %A A. S. Sorin %A V. Yu. Tseitlin %A V. P. Shelest %T Thermal properties of quantum electrodynamics in 2+1~dimensions and confinement %J Teoretičeskaâ i matematičeskaâ fizika %D 1986 %P 25-39 %V 69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a1/ %G ru %F TMF_1986_69_1_a1
M. Yu. Novikov; A. S. Sorin; V. Yu. Tseitlin; V. P. Shelest. Thermal properties of quantum electrodynamics in 2+1~dimensions and confinement. Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 1, pp. 25-39. http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a1/