Thermal properties of quantum electrodynamics in 2+1 dimensions and confinement
Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 1, pp. 25-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The thermal properties of quantum electrodynamics in 2+1 dimensions are studied. The infrared divergences of the thermodynamic variables resulting from the long-range interaction that ensures confinement are eliminated by using a skeleton perturbation theory that takes into account screening. This leads to the appearance of a nonanalyticity of the form $g^2\ln g^2$. The polarization operator, thermodynamic potential, and fermion self-energy are investigated. The obtained results are used to discuss the possible absence of deconfinement.
@article{TMF_1986_69_1_a1,
     author = {M. Yu. Novikov and A. S. Sorin and V. Yu. Tseitlin and V. P. Shelest},
     title = {Thermal properties of quantum electrodynamics in 2+1~dimensions and confinement},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {25--39},
     year = {1986},
     volume = {69},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a1/}
}
TY  - JOUR
AU  - M. Yu. Novikov
AU  - A. S. Sorin
AU  - V. Yu. Tseitlin
AU  - V. P. Shelest
TI  - Thermal properties of quantum electrodynamics in 2+1 dimensions and confinement
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 25
EP  - 39
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a1/
LA  - ru
ID  - TMF_1986_69_1_a1
ER  - 
%0 Journal Article
%A M. Yu. Novikov
%A A. S. Sorin
%A V. Yu. Tseitlin
%A V. P. Shelest
%T Thermal properties of quantum electrodynamics in 2+1 dimensions and confinement
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 25-39
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a1/
%G ru
%F TMF_1986_69_1_a1
M. Yu. Novikov; A. S. Sorin; V. Yu. Tseitlin; V. P. Shelest. Thermal properties of quantum electrodynamics in 2+1 dimensions and confinement. Teoretičeskaâ i matematičeskaâ fizika, Tome 69 (1986) no. 1, pp. 25-39. http://geodesic.mathdoc.fr/item/TMF_1986_69_1_a1/

[1] Efimov G. V., Infrakrasnaya asimptotika i konfainment, Preprint R2-716, OIYaI, Dubna, 1984

[2] Kosterlitz J. M., Thouless D. J., J. Phys., C6 (1973), 1181

[3] Binegar B., J. Math. Phys., 23:8 (1982), 1511–1517 | DOI | MR

[4] Cornwall J. M., Tiktopoulos G., Phys. Rev., D15:10 (1977), 2937–2958

[5] Cornwall J. M., Phys. Rev., D22:6 (1980), 1452–1468 | MR

[6] Jackiw R., Templeton S., Phys. Rev., D23:10 (1981), 2291–2304

[7] Deser S., Jackiw R., Templeton S., Ann. Phys., 140 (1982), 372–411 | DOI | MR

[8] Kogan Ya. I., Morozov A. Yu., YaF, 41:4 (1985), 1080–1096 | MR

[9] Fradkin E. S., Tr. FIAN, 29 (1965), 7–138 | Zbl

[10] Ball J. S., Horn D., Zachariasen F., Nucl. Phys., B132:5 (1978), 509 | DOI

[11] Fedoryuk M. V., Metod perevala, Nauka, M., 1977, gl. 4, § 6. | MR

[12] Kalashnikov O. K., Fortschr. Phys., 32:10 (1984), 525–583 | DOI | MR

[13] Akhiezer I. A., Peletminskii S. V., ZhETF, 38:6 (1960), 1829–1839

[14] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR

[15] Klimov V. V., ZhETF, 82:2 (1982), 336–345 | MR

[16] Weldon H. A., Phys. Rev., D26:10 (1982), 2789–2796

[17] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl