Loop renormalization of the Ginzburg–Landau functional in the theory of phase transitions
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 3, pp. 425-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the free energy functional in the theory of phase transitions an expression is obtained that takes into account the loop renormalizations in all orders with respect to the $n$-component order parameter and in the first order in the vertices of the functional. It is shown, in particular, that such renormalizations cannot destroy the monotonicity of the functional and, therefore, lead to a phase transition of the first kind.
@article{TMF_1986_68_3_a9,
     author = {A. A. Lisyanskii and A. E. Filippov},
     title = {Loop renormalization of the {Ginzburg{\textendash}Landau} functional in the theory of phase transitions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {425--432},
     year = {1986},
     volume = {68},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a9/}
}
TY  - JOUR
AU  - A. A. Lisyanskii
AU  - A. E. Filippov
TI  - Loop renormalization of the Ginzburg–Landau functional in the theory of phase transitions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 425
EP  - 432
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a9/
LA  - ru
ID  - TMF_1986_68_3_a9
ER  - 
%0 Journal Article
%A A. A. Lisyanskii
%A A. E. Filippov
%T Loop renormalization of the Ginzburg–Landau functional in the theory of phase transitions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 425-432
%V 68
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a9/
%G ru
%F TMF_1986_68_3_a9
A. A. Lisyanskii; A. E. Filippov. Loop renormalization of the Ginzburg–Landau functional in the theory of phase transitions. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 3, pp. 425-432. http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a9/

[1] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 | MR

[2] Ma Sh., Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980

[3] Sokolov A. I., ZhETF, 77:4 (1979), 1598–1614

[4] Blankstein D., Aharony A., Phys. Rev. B, 28:1 (1983), 386–401 | DOI

[5] Ziman T. A. L., Amit D. J., Grinstein G., Jayaprakash C., Phys. Rev. B, 25:1 (1982), 319–330 | DOI | MR

[6] Lyuksyutov I. F., Pokrovskii V. L., Khmelnitskii D. E., ZhETF, 69:5 (1975), 1817–1824

[7] Dzyaloshinskii I. E., ZhETF, 72:5 (1977), 1930–1945

[8] Kerszberg M., Mukamel D., Phys. Rev. B, 23:8 (1981), 3943–3952 ; 3953–3969 | DOI

[9] Ivanchenko Yu. M., Lisyanskii A. A., Filippov A. E., FTT, 27:7 (1985), 2156–2159

[10] Korzhenevskii A. L., Shalaev B. N., FTT, 21:8 (1979), 2278–2282

[11] Korzhenevskii A. L., Sokolov A. I., ZhETF, 27:5 (1978), 255–259

[12] Sokolov A. I., Tachanskii A. K., ZhETF, 76:1 (1979), 181–193

[13] Sokolov A. I., Pisma v ZhETF, 29:10 (1979), 618–622

[14] Sokolov A. I., FTT, 25:2 (1983), 552–556

[15] Ivanchenko Yu. M., Lisyanskii A. A., Filippov A. E., ZhETF, 87:3 (1984), 1019–1027

[16] Aharony A., Imry J., Ma S.-K., Phys. Rev. B, 13:1 (1976), 466–473 | DOI | MR

[17] Berezinskii V. L., ZhETF, 59:3, 907–920 | MR

[18] Kosterlitz J. M., Thouless D., J. Phys. C, 6:7 (1973), 1181–1203 | DOI

[19] Shevchenko S. I., FNT, 7:4 (1981), 429–442 | MR

[20] Icobson H. H., Amit D. J., Ann. Phys., 133:1 (1981), 57–78 | DOI