One-dimensional lattice dynamics of hydrogen bonded systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 3, pp. 415-424 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A one-dimensional continuum model of a hydrogen bonded system is considered. The model takes into account the interaction of the proton displacements with the deformation of the lattice of heavy ions. The existence is established of two soliton (slow and fast) and two phonon (low- and high-frequency) modes, for which the ranges of the protonsubsystem-lattice coupling constants and also the velocity intervals are determined. By the introduction of a dynamical collective variable that determines the soliton position the equations of motion of the system can be represented in the form of a dynamical equation for a particle.
@article{TMF_1986_68_3_a8,
     author = {A. V. Zolotaryuk},
     title = {One-dimensional lattice dynamics of hydrogen bonded systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {415--424},
     year = {1986},
     volume = {68},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a8/}
}
TY  - JOUR
AU  - A. V. Zolotaryuk
TI  - One-dimensional lattice dynamics of hydrogen bonded systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 415
EP  - 424
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a8/
LA  - ru
ID  - TMF_1986_68_3_a8
ER  - 
%0 Journal Article
%A A. V. Zolotaryuk
%T One-dimensional lattice dynamics of hydrogen bonded systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 415-424
%V 68
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a8/
%G ru
%F TMF_1986_68_3_a8
A. V. Zolotaryuk. One-dimensional lattice dynamics of hydrogen bonded systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 3, pp. 415-424. http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a8/

[1] Nagle J. F., Mille M., Morowitz H. J., J. Chem. Phys., 72:7 (1980), 3959–3971 | DOI

[2] Aksenov V. L., Plakida N. M., Stamenkovich S., Rasseyanie neitronov segnetoelektrikami, Energoatomizdat, M., 1984

[3] Kosevich A. M., Ivanov B. A., Kovalev A. S., Nelineinye volny namagnichennosti. Dinamicheskie i topologicheskie solitony, Naukova dumka, Kiev, 1983

[4] Davydov A. S., Solitony v molekulyarnykh sistemakh, Naukova dumka, Kiev, 1984 | MR

[5] Antonchenko V. Ya., Mikroskopicheskaya teoriya vody v porakh membran, Naukova dumka, Kiev, 1983

[6] Davydov A. S., Antonchenko V. Ya., Zolotaryuk A. V., Solitony i dvizhenie protonov v ldopodobnykh strukturakh, Preprint ITF-81-60R, ITF, Kiev, 1981; Antonchenko V. Ya., Davydov A. S., Zolotariuk A. V., Phys. Stat. Sol. (b), 115:2 (1983), 631–640 | DOI | MR

[7] Kashimori Y., Kikuchi T., Nishimoto K., J. Chem. Phys., 77:4 (1982), 1904–1907 | DOI

[8] Yomosa S., J. Phys. Soc. Japan, 51:10 (1982), 3318–3324 | DOI | MR

[9] Yomosa S., J. Phys. Soc. Japan, 52:5 (1983), 1866–1873 | DOI

[10] Zolotariuk A. V., Spatschek K. H., Laedke E. W., Phys. Lett., 101A:9 (1984), 517–520 | DOI

[11] Krumhansl J. A., Schrieffer J. R., Phys. Rev., B11 (1975), 3535–3545 | DOI

[12] Currie G. F., Krumhansl J. A., Bishop A. R., Trullinger S. E., Phys. Rev., B22 (1980), 477–496 | DOI | MR

[13] Aksenov V. L., Didyk A. Yu., Yushankhai V. Yu., FNT, 8:6 (1982), 626–634 | MR

[14] Brodskii A. I., Vodorodnaya svyaz, Nauka, M., 1964, 115–125

[15] Gervais J. L., Sakita B., Phys. Rev., 11D:10 (1975), 2943–2945

[16] Bergman D. J., Ben-Jacob E., Imry Y., Maki K., Phys. Rev., 27A:6 (1983), 3345–3348 | DOI