Quantization of Yang–Mills fields in the $A_0=0$ gauge
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 3, pp. 360-367
Cet article a éte moissonné depuis la source Math-Net.Ru
The functional integration method is used to obtain a general expression for the propagator of the Yang–Mills field in the $A_0=0$ gauge.
@article{TMF_1986_68_3_a3,
author = {A. A. Slavnov and S. A. Frolov},
title = {Quantization of {Yang{\textendash}Mills} fields in the $A_0=0$ gauge},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {360--367},
year = {1986},
volume = {68},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a3/}
}
A. A. Slavnov; S. A. Frolov. Quantization of Yang–Mills fields in the $A_0=0$ gauge. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 3, pp. 360-367. http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a3/
[1] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR
[2] Rummer W., Acta Phys. Austr., 41:3–4 (1975), 315–334 | MR
[3] Konetshny W., Kummer W., Nucl. Phys., B100:1 (1975), 106–124 | DOI
[4] Willemsen J. F., Phys. Rev., 17:2 (1978), 574–584 | MR
[5] Caracciolo S., Curci G., Menotti P., Phys. Lett., 113B:4 (1982), 311–314 | DOI
[6] Dahmen H. D., Sholz B., Steiner F., Phys. Lett., 117B:5 (1982), 339–341 | DOI | MR
[7] Sholz B., Steiner F., Path Integral Quantization in the Temporal Gauge, Preprint DESY, 83-055, Hamburg, 1983
[8] Friedman J. L., Papastamatiou N. J., Nucl. Phys., B219:1 (1983), 125–142 | DOI