Transmission of waves and particles through long random barriers
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 3, pp. 433-448
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The logarithmic damping rate of the coeffficient of transmission, averaged over the scatterer configurations, of a long one-dimensional barrier is expanded in powers of the scatterer concentration, and this expansion is analyzed. It is shown that the damping rate is analytic at low concentrations and for nonresonant scattering in both the case of completely
randomly distributed scatterers as well as when there are statistical correlations in their distribution. The technique of the proof is analogous to the technique employed with the Kirkwood–Salsburg correlation equations of statistical physics.
			
            
            
            
          
        
      @article{TMF_1986_68_3_a10,
     author = {A. V. Marchenko and L. A. Pastur},
     title = {Transmission of waves and particles through long random barriers},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {433--448},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a10/}
}
                      
                      
                    TY - JOUR AU - A. V. Marchenko AU - L. A. Pastur TI - Transmission of waves and particles through long random barriers JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1986 SP - 433 EP - 448 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a10/ LA - ru ID - TMF_1986_68_3_a10 ER -
A. V. Marchenko; L. A. Pastur. Transmission of waves and particles through long random barriers. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 3, pp. 433-448. http://geodesic.mathdoc.fr/item/TMF_1986_68_3_a10/
