Virtual levels of $n$-particle systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 265-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The energy operators $H$ of unstable quantum systems $Z_1$ that do not possess stable subsystems are considered. It is shown that if the Hamiltonians of the subsystems in $Z_1$ do not have virtual levels but the operator $H$ does then a virtual level of the operator $H$ is due to the existence of a finitedimensional subspace of functions $\mathscr W=\{u\}\in\mathscr L_2^{(1)}$ such that the functions $u$ are generalized solutions of the Schrödinger equation $Hu=0$ and on the subspace orthogonal (in the gradient sense) to $\mathscr W$ the operator $H$ does not have virtual levels.
@article{TMF_1986_68_2_a9,
     author = {G. M. Zhislin},
     title = {Virtual levels of $n$-particle systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {265--275},
     year = {1986},
     volume = {68},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a9/}
}
TY  - JOUR
AU  - G. M. Zhislin
TI  - Virtual levels of $n$-particle systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 265
EP  - 275
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a9/
LA  - ru
ID  - TMF_1986_68_2_a9
ER  - 
%0 Journal Article
%A G. M. Zhislin
%T Virtual levels of $n$-particle systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 265-275
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a9/
%G ru
%F TMF_1986_68_2_a9
G. M. Zhislin. Virtual levels of $n$-particle systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 265-275. http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a9/

[1] Yafaev D. R., Matem. sb., 94:4 (1974), 567–593 | MR | Zbl

[2] Yafaev D. R., TMF, 25:2 (1975), 185–195 | MR | Zbl

[3] Vugalter S. A., Zhislin G. M., Commun. Math. Phys., 87 (1982), 89–109 | DOI | MR

[4] Sigal I. M., Commun. Math. Phys., 48 (1976), 137–154 | DOI | MR | Zbl

[5] Vugalter S. A., Zhislin G. M., Rep. Math. Phys., 19:1 (1984), 39–90 | DOI | MR | Zbl

[6] Vugalter S. A., Zhislin G. M., DAN SSSR, 267:4 (1982), 789–786 | MR

[7] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[8] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. t. 2. Garmonicheskii analiz, samosopryazhennost, Mir, M., 1978 | MR

[9] Zhislin G. M., UMN, XVI:1 (1961), 149–152 | MR | Zbl

[10] Iorgens K., Vaidmann I., Spektralnye svoistva gamiltonovykh operatorov, Mir, M., 1976 | MR

[11] Zhislin G. M., Tr. Mosk. matem. ob-va, 9, 1960, 81–120 | MR | Zbl

[12] Antonets M. A., Zhislin G. M., Shereshevskii I. A., Dopolnenie k kn.: Iorgens K., Vaidmann I., Spektralnye svoistva gamiltonovykh operatorov, Mir, M., 1970 | MR

[13] Vugalter S. A., Zhislin G. M., TMF, 55:1 (1983), 66–77 | MR