Virtual levels of $n$-particle systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 265-275

Voir la notice de l'article provenant de la source Math-Net.Ru

The energy operators $H$ of unstable quantum systems $Z_1$ that do not possess stable subsystems are considered. It is shown that if the Hamiltonians of the subsystems in $Z_1$ do not have virtual levels but the operator $H$ does then a virtual level of the operator $H$ is due to the existence of a finitedimensional subspace of functions $\mathscr W=\{u\}\in\mathscr L_2^{(1)}$ such that the functions $u$ are generalized solutions of the Schrödinger equation $Hu=0$ and on the subspace orthogonal (in the gradient sense) to $\mathscr W$ the operator $H$ does not have virtual levels.
@article{TMF_1986_68_2_a9,
     author = {G. M. Zhislin},
     title = {Virtual levels of $n$-particle systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {265--275},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a9/}
}
TY  - JOUR
AU  - G. M. Zhislin
TI  - Virtual levels of $n$-particle systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 265
EP  - 275
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a9/
LA  - ru
ID  - TMF_1986_68_2_a9
ER  - 
%0 Journal Article
%A G. M. Zhislin
%T Virtual levels of $n$-particle systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 265-275
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a9/
%G ru
%F TMF_1986_68_2_a9
G. M. Zhislin. Virtual levels of $n$-particle systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 265-275. http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a9/