Inelastic transitions in collisions of multidimensional harmonic oscillators
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 255-264

Voir la notice de l'article provenant de la source Math-Net.Ru

A Feynman path integral representation for the $S$ matrix of the problem is used to obtain an exact expression for the transition probabilities when multidimensional harmonic oscillators collide under the influence of a perturbation that contains terms linear and quadratic in the coordinates. The possibility of transition to the approximation of a “generalized external force” is analyzed. As an example, the problem of the interaction of two one-dimensional harmonic oscillators with a potential that depends on the time through the inverse hyperbolic cosine is solved.
@article{TMF_1986_68_2_a8,
     author = {A. I. Denisenko and G. V. Dubrovskiy},
     title = {Inelastic transitions in collisions of multidimensional harmonic oscillators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {255--264},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a8/}
}
TY  - JOUR
AU  - A. I. Denisenko
AU  - G. V. Dubrovskiy
TI  - Inelastic transitions in collisions of multidimensional harmonic oscillators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 255
EP  - 264
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a8/
LA  - ru
ID  - TMF_1986_68_2_a8
ER  - 
%0 Journal Article
%A A. I. Denisenko
%A G. V. Dubrovskiy
%T Inelastic transitions in collisions of multidimensional harmonic oscillators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 255-264
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a8/
%G ru
%F TMF_1986_68_2_a8
A. I. Denisenko; G. V. Dubrovskiy. Inelastic transitions in collisions of multidimensional harmonic oscillators. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 255-264. http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a8/