Inelastic transitions in collisions of multidimensional harmonic oscillators
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 255-264
Voir la notice de l'article provenant de la source Math-Net.Ru
A Feynman path integral representation for the $S$ matrix of the problem
is used to obtain an exact expression for the transition probabilities
when multidimensional harmonic oscillators collide under the influence
of a perturbation that contains terms linear and quadratic in the coordinates.
The possibility of transition to the approximation of a “generalized external force” is analyzed. As an example, the problem of the interaction of two one-dimensional harmonic oscillators with a potential that depends on the time through the inverse hyperbolic cosine is solved.
@article{TMF_1986_68_2_a8,
author = {A. I. Denisenko and G. V. Dubrovskiy},
title = {Inelastic transitions in collisions of multidimensional harmonic oscillators},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {255--264},
publisher = {mathdoc},
volume = {68},
number = {2},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a8/}
}
TY - JOUR AU - A. I. Denisenko AU - G. V. Dubrovskiy TI - Inelastic transitions in collisions of multidimensional harmonic oscillators JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1986 SP - 255 EP - 264 VL - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a8/ LA - ru ID - TMF_1986_68_2_a8 ER -
A. I. Denisenko; G. V. Dubrovskiy. Inelastic transitions in collisions of multidimensional harmonic oscillators. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 255-264. http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a8/