Analog of Levinson's formula for a Schrödinger operator with long-range potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 244-254
Cet article a éte moissonné depuis la source Math-Net.Ru
Trace formulas of zeroth order are obtained for a radial Schrödinger operator with long-range potential $V(x)$ that decreases as $x\to\infty$ as the power $x^{-\alpha}$ with $1\leqslant\alpha\leqslant 2$. These formulas relate the increment of the phase shift in the continuum to the characteristics of the discrete spectrum and generalize Levinson's theorem to the case of slowly decreasing potentials.
@article{TMF_1986_68_2_a7,
author = {A. A. Kvitsinskiy},
title = {Analog of {Levinson's} formula for {a~Schr\"odinger} operator with long-range potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {244--254},
year = {1986},
volume = {68},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a7/}
}
A. A. Kvitsinskiy. Analog of Levinson's formula for a Schrödinger operator with long-range potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 244-254. http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a7/
[1] Levinson N., Mat.-fys. medd. Kgl. danske vid. selskab., 25 (1949), 9 | MR | Zbl
[2] Faddeev L. D., DAN SSSR, 115:5 (1957), 878 ; Буслаев В. С., Фаддеев Л. Д., ДАН СССР, 132:1 (1960), 13–16 | MR | Zbl | MR | Zbl
[3] Nussentsveig Kh. M., Prichinnost i dispersionnye sootnosheniya, Mir, M., 1976
[4] Berk F. Dzh., Potentsialnoe rasseyanie v atomnoi fizike, Atomizdat, M., 1980
[5] Seaton M. J., Comp. rend., 240 (1955), 1317
[6] Yafaev D. R., TMF, 11:1 (1972), 78–92 | MR
[7] Yafaev D. R., Commun. Math. Phys., 85 (1982), 177–196 | DOI | MR | Zbl
[8] Nyuton R., Teoriya rasseyaniya voln i chastits, Mir, M., 1969 | MR
[9] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR