Higgs potentials as ``inheritance'' from higher space-time dimensions I.~Dimensional reduction and scalar fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 225-235

Voir la notice de l'article provenant de la source Math-Net.Ru

The dimensional reduction of multidimensional “free” gauge theories with additional space-time symmetry is considered. In the framework of this approach, a general method for finding explicitly the scalar fields in the reduced theory is developed. These fields are described by a certain intertwining operator, for the construction of which a root lattice technique for complex classical Lie algebras which generalizes the Dynkin diagram technique is developed.
@article{TMF_1986_68_2_a5,
     author = {I. P. Volobuev and Yu. A. Kubyshin},
     title = {Higgs potentials as ``inheritance'' from higher space-time dimensions {I.~Dimensional} reduction and scalar fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {225--235},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a5/}
}
TY  - JOUR
AU  - I. P. Volobuev
AU  - Yu. A. Kubyshin
TI  - Higgs potentials as ``inheritance'' from higher space-time dimensions I.~Dimensional reduction and scalar fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 225
EP  - 235
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a5/
LA  - ru
ID  - TMF_1986_68_2_a5
ER  - 
%0 Journal Article
%A I. P. Volobuev
%A Yu. A. Kubyshin
%T Higgs potentials as ``inheritance'' from higher space-time dimensions I.~Dimensional reduction and scalar fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 225-235
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a5/
%G ru
%F TMF_1986_68_2_a5
I. P. Volobuev; Yu. A. Kubyshin. Higgs potentials as ``inheritance'' from higher space-time dimensions I.~Dimensional reduction and scalar fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 225-235. http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a5/