Higgs potentials as “inheritance” from higher space-time dimensions I. Dimensional reduction and scalar fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 225-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dimensional reduction of multidimensional “free” gauge theories with additional space-time symmetry is considered. In the framework of this approach, a general method for finding explicitly the scalar fields in the reduced theory is developed. These fields are described by a certain intertwining operator, for the construction of which a root lattice technique for complex classical Lie algebras which generalizes the Dynkin diagram technique is developed.
@article{TMF_1986_68_2_a5,
     author = {I. P. Volobuev and Yu. A. Kubyshin},
     title = {Higgs potentials as {\textquotedblleft}inheritance{\textquotedblright} from higher space-time dimensions {I.~Dimensional} reduction and scalar fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {225--235},
     year = {1986},
     volume = {68},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a5/}
}
TY  - JOUR
AU  - I. P. Volobuev
AU  - Yu. A. Kubyshin
TI  - Higgs potentials as “inheritance” from higher space-time dimensions I. Dimensional reduction and scalar fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 225
EP  - 235
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a5/
LA  - ru
ID  - TMF_1986_68_2_a5
ER  - 
%0 Journal Article
%A I. P. Volobuev
%A Yu. A. Kubyshin
%T Higgs potentials as “inheritance” from higher space-time dimensions I. Dimensional reduction and scalar fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 225-235
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a5/
%G ru
%F TMF_1986_68_2_a5
I. P. Volobuev; Yu. A. Kubyshin. Higgs potentials as “inheritance” from higher space-time dimensions I. Dimensional reduction and scalar fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 225-235. http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a5/

[1] Forgacs P., Manton N. S., Commun. Math. Phys., 72:1 (1980), 15–34 | DOI | MR

[2] Rudolph G., Volobujev I., Geometry of symmetric gauge fields, Preprint KMU-QFT 05/81, KMU, Leipzig, 1981; Dimensional reduction of gauge theories in terms of fiber bundle reduction, Preprint KMU-QFT 01/84, KMU, Leipzig, 1984

[3] Volobuev I. P., Rudolf G., TMF, 62:3 (1985), 388–399 | MR | Zbl

[4] Schwarz A. S., Commun. Math. Phys., 56:1 (1977), 79–86 | DOI | MR | Zbl

[5] Dynkin E. B., Matem. sb., 30:2 (1952), 349–462 | MR | Zbl

[6] Goto M., Grosskhans F., Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl

[7] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[8] Patera J., Sankoff D., Tables of branching rules and representations of simple Lie algebras, Les Presses de L'Université de Montreal, Montreal, 1974 | MR

[9] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1978 | MR | Zbl