Bar'yakhtar–Krivoruchko–Yablonskii representation and thermodynamics of magnetically ordered systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 312-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The thermodynamics of a Heisenberg ferromagnet is studied on the basis of the Bar'yakhtar–Krivoruchko–Yablonskii method. The interaction of the elementary excitations is taken into account in the generalized selfconsistent field approximation. The approach leads to results that at low temperatures are identical to Dyson's results and make it possible to obtain an interpolation description of the thermodynamic functions in the complete region of temperatures in which an ordered phase exists.
@article{TMF_1986_68_2_a13,
     author = {T. N. Antsygina and V. A. Slyusarev},
     title = {Bar'yakhtar{\textendash}Krivoruchko{\textendash}Yablonskii representation and thermodynamics of magnetically ordered systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {312--320},
     year = {1986},
     volume = {68},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a13/}
}
TY  - JOUR
AU  - T. N. Antsygina
AU  - V. A. Slyusarev
TI  - Bar'yakhtar–Krivoruchko–Yablonskii representation and thermodynamics of magnetically ordered systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 312
EP  - 320
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a13/
LA  - ru
ID  - TMF_1986_68_2_a13
ER  - 
%0 Journal Article
%A T. N. Antsygina
%A V. A. Slyusarev
%T Bar'yakhtar–Krivoruchko–Yablonskii representation and thermodynamics of magnetically ordered systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 312-320
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a13/
%G ru
%F TMF_1986_68_2_a13
T. N. Antsygina; V. A. Slyusarev. Bar'yakhtar–Krivoruchko–Yablonskii representation and thermodynamics of magnetically ordered systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 312-320. http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a13/

[1] Stinchcombe R., Horwitz G., Englert F., Brout R., Phys. Rev., 130:1 (1963), 155–176 | DOI | MR | Zbl

[2] Vaks V. G., Larkin A. I., Pikin S. A., ZhETF, 53:3(9) (1967), 1089–1106

[3] Tyablikov S. V., Metody kvantovoi teorii magnetizma, Nauka, M., 1975 | MR

[4] Rudoi Yu. G., Statisticheskaya fizika i kvantovaya teoriya polya, Nauka, M., 1973, 97–164 | MR

[5] Baryakhtar V. G., Krivoruchko V. N., Yablonskii D. A., ZhETF, 85:2(8) (1983), 602–613

[6] Baryakhtar V. G., Krivoruchko V. N., Yablonskii D. A., Funktsii Grina v teorii magnetizma, Naukova dumka, Kiev, 1984 | MR

[7] Plakida N. M., FTT, 11:3 (1969), 700–707

[8] Gillis N. S., Werthamer N. R., Koehler T. R., Phys. Rev., 165:3 (1968), 951–964 | DOI

[9] B. I. Verkin, A. F. Prikhotko (red.), Kriokristally, Naukova dumka, Kiev, 1983

[10] Bloch M., Phys. Rev. Lett., 9:7 (1962), 286–287 | DOI

[11] Mattis D., Teoriya magnetizma, Mir, M., 1967

[12] Callen H. B., Phys. Rev., 130:3 (1963), 890–898 | DOI | Zbl

[13] Berlin T. H., Kac M., Phys. Rev., 86:3 (1952), 821–830 | DOI | MR

[14] Dyson F., Phys. Rev., 102:5 (1956), 1217–1230 ; 1230–1244 | DOI | MR | Zbl | MR | Zbl

[15] Patashinskii A. Z., Pokrovskii V. L., ZhETF, 64:4 (1973), 1445–1451