Conservation laws of evolution systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 163-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For evolution systems of differential equations, conserved currents, in particular trivial ones, are described in terms of their densities. A formula that can be regarded as an analog of Noether's theorem for non-Lagrangian systems is derived. An isomorphism is constructed between the space of conservation laws, i.e., the equivalence classes of the conserved currents with respect to the trivial currents, and the solution space of a certain strongly overdetermined system of linear differential equations.
@article{TMF_1986_68_2_a0,
     author = {V. V. Zharinov},
     title = {Conservation laws of evolution systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--171},
     year = {1986},
     volume = {68},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a0/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Conservation laws of evolution systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 163
EP  - 171
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a0/
LA  - ru
ID  - TMF_1986_68_2_a0
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Conservation laws of evolution systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 163-171
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a0/
%G ru
%F TMF_1986_68_2_a0
V. V. Zharinov. Conservation laws of evolution systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 2, pp. 163-171. http://geodesic.mathdoc.fr/item/TMF_1986_68_2_a0/

[1] Lax P. D., Commun. Pure Appl. Math., 28:1 (1975), 141–188 | DOI | MR | Zbl

[2] Vinogradov A. M., DAN SSSR, 238:6 (1978), 1028–1031 | MR | Zbl

[3] Tsujishita T., Osaka J. Math., 19 (1982), 311–363 | MR | Zbl

[4] Galindo A., Martinez L., Lett. Math. Phys., 2 (1978), 385–390 | DOI | MR | Zbl

[5] Anderson I. M., Duchamp T., Amer. J. Math., 102:5 (1980), 781–868 | DOI | MR | Zbl

[6] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[7] Vinogradov A. M., DAN SSSR, 248:2 (1979), 274–278 | MR | Zbl

[8] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[9] Vinogradov A. M., Acta Appl. Math., 2 (1984), 21–78 | DOI | MR | Zbl

[10] Vladimirov V. S., Volovich I. V., TMF, 62:1 (1985), 3–29 | MR | Zbl

[11] Vladimirov V. S., Zharinov V. V., Diff. uravn., XVI:5 (1980), 845–867 | MR | Zbl

[12] Zharinov V. V., Diff. uravn., XVIII:3 (1982), 457–466 | MR

[13] Vinogradov A. M., J. Math. Anal. Appl., 100:1 (1984), 1–40 ; 41–129 | DOI | MR | Zbl | Zbl

[14] Svinolupov S. I., Sokolov V. V., Integriruemye sistemy, BFAN SSSR, Ufa, 1982, 53–67

[15] Khamitova R. S., TMF, 52:2 (1982), 244–251 | MR | Zbl