Kinetic equations for a dynamical system in a condensed medium and a strong external field
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 117-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Kinetic equations are obtained for the parameters of a quantum dynamical system interacting with structural groups of a condensed medium, which acts as a thermal reservoir. The equations are valid for arbitrary strength of an external (constant and variable) field that acts only on the dynamical system. Approximate kinetic equations valid in the presence of a highfrequency external field are obtained for specific dynamical systems – a two-level system and a quantum rotator. For these same dynamical systems and representation of the medium (thermal reservoir) by a set of harmonic oscillators, the relaxation times of the dynamical system are obtained as functions of the amplitude and frequency of the external field, and also the temperature.
@article{TMF_1986_68_1_a9,
     author = {\`E. G. Petrov},
     title = {Kinetic equations for a~dynamical system in a~condensed medium and a~strong external field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {117--127},
     year = {1986},
     volume = {68},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a9/}
}
TY  - JOUR
AU  - È. G. Petrov
TI  - Kinetic equations for a dynamical system in a condensed medium and a strong external field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 117
EP  - 127
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a9/
LA  - ru
ID  - TMF_1986_68_1_a9
ER  - 
%0 Journal Article
%A È. G. Petrov
%T Kinetic equations for a dynamical system in a condensed medium and a strong external field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 117-127
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a9/
%G ru
%F TMF_1986_68_1_a9
È. G. Petrov. Kinetic equations for a dynamical system in a condensed medium and a strong external field. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 117-127. http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a9/

[1] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946 | MR

[2] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[3] Akhiezer A. I., Peletminskii S. V., Metody statisticheskoi fiziki, Nauka, M., 1977 | MR

[4] Peletminskii S. V., Tsukanov V. D., TMF, 7:3 (1971), 395–411 | Zbl

[5] Seminozhenko V. P., Yatsenko A. A., TMF, 47:2 (1981), 277–288

[6] Amirov R. Kh., Smolyanskii S. A., Shekhter L. Sh., TMF, 21:2 (1974), 247–257

[7] Epshtein E. M., FTT, 11:10 (1969), 2732–2738

[8] Kasyanov V. A., Starostin A. N., ZhETF, 76:3 (1979), 944–958

[9] Epshtein E. M., Izv. vuzov, Radiofizika, 18:6 (1975), 785–811

[10] Seminozhenko V. P., Phys. Rep., 91:3 (1982), 104–184 | DOI | MR

[11] Peletminskii S. V., Petrov E. G., Preprint ITF-68-20, ITF, Kiev, 1968

[12] Petrov E. G., UFZh, 23:9 (1978), 1493–1498

[13] Petrov E. G., TMF, 46:1 (1981), 99–110 | MR

[14] Rozenbaum V. M., Ogenko V. M., Khim. fiz., 7 (1983), 972–979

[15] Pronin K. A., TMF, 61:3 (1984), 442–452 | MR