Correlation functions for anisotropic heisenberg model in zero magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 88-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Analysis of the exact solution of the Ising model for a linear chain provides the basis for a scheme of systematic calculation of the correlation functions of arbitrary order for a system of spins coupled by the exchange interaction at temperatures above the critical point. The correlation functions can be calculated from the equation of long-range coupling that is derived; it has the form $\langle S_f^\alpha A\rangle=\eta_\alpha\langle\sigma_f^\alpha A\rangle$, where $\displaystyle\sigma_f^\alpha=\sum_{f'}A_{ff'}^\alpha S_{f'}^\alpha$ is the operator of the local field, $\eta_\alpha$ are the temperature parameters of the model, and $A_{ff'}^\alpha$ is the interaction potential, $\alpha=x,y,z$. A comparison is made with the exact solutions for the one- and two-dimensional Ising models.
@article{TMF_1986_68_1_a6,
     author = {R. R. Nigmatullin and V. A. Toboev},
     title = {Correlation functions for anisotropic heisenberg model in zero magnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {88--98},
     year = {1986},
     volume = {68},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a6/}
}
TY  - JOUR
AU  - R. R. Nigmatullin
AU  - V. A. Toboev
TI  - Correlation functions for anisotropic heisenberg model in zero magnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 88
EP  - 98
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a6/
LA  - ru
ID  - TMF_1986_68_1_a6
ER  - 
%0 Journal Article
%A R. R. Nigmatullin
%A V. A. Toboev
%T Correlation functions for anisotropic heisenberg model in zero magnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 88-98
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a6/
%G ru
%F TMF_1986_68_1_a6
R. R. Nigmatullin; V. A. Toboev. Correlation functions for anisotropic heisenberg model in zero magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 88-98. http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a6/

[1] Rudoi Yu. G., Statisticheskaya fizika i kvantovaya teoriya polya, Nauka, M., 1973, 97–164 | MR

[2] Tyablikov S. V., Metody kvantovoi teorii magnetizma, Nauka, M., 1975 | MR

[3] Zhelifonov M. P., TMF, 8:3 (1971), 401–412

[4] Nigmatullin R. R., Physica, 116A (1982), 612–621 | DOI | MR

[5] Bariev R. Z., Zhelifonov M. P., TMF, 25:1 (1975), 108–117 | MR

[6] Khamermesh M., Teoriya grupp i ee primenenie k fizicheskim problemam, Mir, M., 1966, 124–126. | Zbl

[7] Bogolyubov N. N., Statisticheskaya fizika i kvantovaya teoriya polya, Nauka, M., 1973, 25–26 | MR

[8] Bogolyubov N. N. (ml.), Sadovnikov B. I., Nekotorye voprosy statisticheskoi mekhaniki, Vysshaya shkola, M., 1975 | MR

[9] Nigmatullin R. R., Izv. VUZov (fizika), 1981, no. 12, 18–20

[10] Berim G. O., Kessel A. R., Magnitnyi rezonans izingovskikh magnetikov, Nauka, M., 1982

[11] Goldman M., Spinovaya temperatura i YaMR v tverdykh telakh, Mir, M., 1972, prilozhenie, s. 303.

[12] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[13] Allan G. A., Betts D. D., Can. J. Phys., 46 (1968), 15–23 | DOI

[14] Berim G. O., Kamalov R. G., TMF, 59:2 (1984), 297–306 | MR