Evolution operator for the Bogolyubov (BBGKY) hierarchy. Lattice systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 69-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The hierarchy of Bogolyubov type (BBGKY) kinetic equations for infinite classical and quantum lattice systems is considered. A formula for solving the Cauchy problem for the equations in the form $F(t)=PS(-t)F^0$ is obtained; here, $P$ is the operator of projection onto the subspace of sequences of finitely additive measures satisfying consistency conditions. Proofs are given of the uniqueness of the solution and the group property of the evolution operator in the situation when the observables are specified by uniformly continuous functions. Stationary solutions of the equations are obtained.
@article{TMF_1986_68_1_a5,
     author = {A. K. Vidybida},
     title = {Evolution operator for the {Bogolyubov} {(BBGKY)} hierarchy. {Lattice} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {69--87},
     year = {1986},
     volume = {68},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a5/}
}
TY  - JOUR
AU  - A. K. Vidybida
TI  - Evolution operator for the Bogolyubov (BBGKY) hierarchy. Lattice systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 69
EP  - 87
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a5/
LA  - ru
ID  - TMF_1986_68_1_a5
ER  - 
%0 Journal Article
%A A. K. Vidybida
%T Evolution operator for the Bogolyubov (BBGKY) hierarchy. Lattice systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 69-87
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a5/
%G ru
%F TMF_1986_68_1_a5
A. K. Vidybida. Evolution operator for the Bogolyubov (BBGKY) hierarchy. Lattice systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 69-87. http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a5/

[1] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi mekhanike, OGIZ, M.–L., 1946 | MR

[2] Bogolyubov M. M., Lektsiïz kvantovoïstatistiki, Radyanska shkola, K., 1949

[3] Vidybida A. K., DAN USSR, ser. A, 1975, no. 6, 542–545 ; Петрина Д. Я., ТМФ, 38:2 (1979), 230–250 | MR | MR

[4] Lanford O. E., Lebovitz J. L., Lieb E. H., J. Stat. Phys., 16:6 (1977), 453–461 | DOI | MR

[5] Vidybida A. K., TMF, 48:2 (1981), 236–249 | MR

[6] Kunz H., Commun. Math. Phys., 59 (1978), 53–69 | DOI | MR

[7] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, ONTI NKTP SSSR, L., 1936 | MR

[8] Vidybida A. K., TMF, 39:3 (1979), 353–358 | MR

[9] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii, vyp. 4, Fizmatgiz, M., 1961 | MR

[10] Aleksandrov A. D., Matem. sb., 9(51):3 (1941), 563–628

[11] Gelfand I. M., DAN SSSR, 25 (1939), 711–716

[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, t. 2, Mir, M., 1978 | MR

[13] Banakh S. S., Kurs funktsionalnogo analizy, Radyanska shkola, K., 1948

[14] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[15] Lorentz G. G., Acta Math., 2 (1951), 173–175 | MR

[16] Esposito R., Pulvirenti M., J. Math. Phys., 21 (1980), 1194–1200 | DOI | MR

[17] Marchioro C., Pellegrinotti A., Pulvirenti M., Suhov Yu., Commun. Math. Phys., 66 (1979), 131–146 | DOI | MR

[18] Pfister Ch.-E., Commun. Math. Phys., 79 (1981), 181–188 ; Dobrushin R. L., Shlosman S. B., Commun. Math. Phys., 42 (1975), 31–40 ; Bricmont J., Fontaine J.-R., Lebowitz J. L., Lieb E. H., Spencer T., Commun. Math. Phys., 72 (1981), 545–566 | DOI | MR | DOI | MR | DOI | MR