A dynamical system with infinitely many degrees of freedom and solution of the Frenkel'–Kontorova problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 58-68
Cet article a éte moissonné depuis la source Math-Net.Ru
A system with infinitely many particles and Frenkel'–Kontorova potential is studied. Solutions of the Frenkel'–Kontorova problem are found, the stability of the stationary solutions is proved, and families of synchronous, periodic, and conditionally periodic motions are constructed.
@article{TMF_1986_68_1_a4,
author = {L. D. Pustyl'nikov},
title = {A~dynamical system with infinitely many degrees of freedom and solution of the {Frenkel'{\textendash}Kontorova} problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {58--68},
year = {1986},
volume = {68},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a4/}
}
TY - JOUR AU - L. D. Pustyl'nikov TI - A dynamical system with infinitely many degrees of freedom and solution of the Frenkel'–Kontorova problem JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1986 SP - 58 EP - 68 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a4/ LA - ru ID - TMF_1986_68_1_a4 ER -
L. D. Pustyl'nikov. A dynamical system with infinitely many degrees of freedom and solution of the Frenkel'–Kontorova problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 58-68. http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a4/
[1] Frenkel Ya. I., Kontorova T. A., ZhETF, 8 (1938), 89–97
[2] Pokrovsky V. L., J. Phys., 42:6 (1981), 761–766 | DOI | MR
[3] Pokrovskii V. L., Talapov A. L., ZhETF, 75:3(9) (1978), 1151–1157
[4] Sinai Ya. G., J. Stat. Phys., 29:3 (1982), 401–425 | DOI | MR
[5] Davydov A. S., Solitony v molekulyarnykh sistemakh, Naukova dumka, K., 1985 | MR
[6] Pustylnikov L. D., Tr. Mosk. matem. ob-va, 46, 1983, 187–200 | MR
[7] Zigel K. L., Lektsii po nebesnoi mekhanike, IL, M., 1959