Coherent dynamics of a system of coupled Bose and Fermi oscillators
Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 141-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A quantum model of single-mode radiation interacting nonlinearly with an $N$-site lattice of Bose or Fermi oscillators is investigated. In the approximation of “equivalent sites” for resonant and nonresonant interactions, the dynamics of the model generated by the asymptotic behavior of the matrix elements of its evolution operator as $N\to\infty$ is investigated. It is shown that in the case of a Bose lattice (infinite-level system) the nature of the solutions of the equations of motion depends on the boundary values of the variables and the parameters and that in the case of a Fermi lattice (two-level system) there is no such dependence. The collective effect of condensation of the radiation field is investigated in a Bose lattice with resonant interaction.
@article{TMF_1986_68_1_a11,
     author = {M. B. Shirshov and V. S. Yarunin},
     title = {Coherent dynamics of a~system of coupled {Bose} and {Fermi} oscillators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {141--150},
     year = {1986},
     volume = {68},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a11/}
}
TY  - JOUR
AU  - M. B. Shirshov
AU  - V. S. Yarunin
TI  - Coherent dynamics of a system of coupled Bose and Fermi oscillators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 141
EP  - 150
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a11/
LA  - ru
ID  - TMF_1986_68_1_a11
ER  - 
%0 Journal Article
%A M. B. Shirshov
%A V. S. Yarunin
%T Coherent dynamics of a system of coupled Bose and Fermi oscillators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 141-150
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a11/
%G ru
%F TMF_1986_68_1_a11
M. B. Shirshov; V. S. Yarunin. Coherent dynamics of a system of coupled Bose and Fermi oscillators. Teoretičeskaâ i matematičeskaâ fizika, Tome 68 (1986) no. 1, pp. 141-150. http://geodesic.mathdoc.fr/item/TMF_1986_68_1_a11/

[1] Rupasov V. I., Yudson V. K., ZhETF, 86:3 (1984), 819–825 | MR

[2] Bogolyubov N. N. (ml.), Fam Le Kien, Shumovskii A. S., TMF, 60:2 (1984), 254–261 | MR

[3] Zakharov V. E., Pisma v ZhETF, 32:10 (1980), 603–607

[4] Trifonov E. D., Zaitsev A. V., Malikov R. F., ZhETF, 76:1 (1979), 65–75

[5] Andreev A. V., Enaki N. A., Ilinskii Yu. A., ZhETF, 87:2 (1984), 400–407

[6] Kiryanov V. B., Yarunin V. S., TMF, 51:3 (1982), 456–464 | MR

[7] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR

[8] Moiseev N. N., Asimptoticheskie metody nelineinoi mekhaniki, Nauka, M., 1981 | MR

[9] Andreev A. V., Emelyanov V. I., Ilinskii Yu. A., UFN, 131:4 (1980), 653–694 | DOI

[10] Popov V. N., Yarunin V. S., TMF, 57:1 (1983), 115–120

[11] Gilmor R., Prikladnaya teoriya katastrof, kn. 2, Mir, M., 1984 | MR | Zbl

[12] Zaslavskii G. M., Stokhastichnost dinamicheskikh sistem, Nauka, M., 1984 | MR | Zbl

[13] Balabanyan G. O., TMF, 54:2 (1983), 277–288 | MR

[14] Aleksandrov I. V., Nesterova Z. V., UFN, 143:3 (1984), 474–486