Bethe method: Thermodynamics and limit states
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 3, pp. 440-450
Cet article a éte moissonné depuis la source Math-Net.Ru
The hypothesis that there exists a limit density for the distribution of the numbers that parametrize the Bethe eigenvector is generalized and proved. The case of a finite number of string types is considered. A system of integrodifferential equations is derived for the string distribution densities, and particular solutions of the system are found.
@article{TMF_1986_67_3_a8,
author = {E. V. Gusev},
title = {Bethe method: {Thermodynamics} and limit states},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {440--450},
year = {1986},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a8/}
}
E. V. Gusev. Bethe method: Thermodynamics and limit states. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 3, pp. 440-450. http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a8/
[1] Takhtadzhyan L. A., Faddeev L. D., UMN, 34:5 (1979), 13–63 | MR
[2] Takhtadzhyan L. A., Faddeev L. D., Zap. nauchn. semin. LOMI, 109, 1981, 134–178 | MR | Zbl
[3] Rupasov V. I., Yudson V. I., ZhETF, 86:3 (1984), 819–825 | MR
[4] Babujian H. M., Nucl. Phys., B215 (1983), 317–336 | DOI | MR
[5] Takhtajan L. A., Phys. Lett., 87A:9 (1982), 479–482 | DOI | MR
[6] Hulthen L., Arkiv för Matematik, Astronomi och Fysik, B26A, H. 3:11 (1938), 1–106
[7] Gusev E. V., TMF, 63:2 (1985), 303–311 | MR
[8] Gusev E., Rep. Math. Phys., 18:3 (1980), 451–461 | DOI | MR
[9] Yang C. N., Yang C. P., Phys. Rev., 150:1 (1966), 321–327 | DOI