Phase transitions in one-dimensional Hubbard model with degeneracy
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 3, pp. 470-473 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A solution in quadratures of the doubly orbitally degenerate Hubbard chain with strong correlations of the electrons in one orbital is obtained by means of the spin-symmetrized Bethe–Gaudin–Yaug ansatz. The correlation gap in the dielectric phase is due to both interorbital Coulomb repulsion of the electrons and their Hund exchange interaction. The possibilities of a Mort transition are investigated.
@article{TMF_1986_67_3_a11,
     author = {A. V. Vedyaev and M. E. Zhuravlev and V. A. Ivanov},
     title = {Phase transitions in one-dimensional {Hubbard} model with degeneracy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {470--473},
     year = {1986},
     volume = {67},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a11/}
}
TY  - JOUR
AU  - A. V. Vedyaev
AU  - M. E. Zhuravlev
AU  - V. A. Ivanov
TI  - Phase transitions in one-dimensional Hubbard model with degeneracy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 470
EP  - 473
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a11/
LA  - ru
ID  - TMF_1986_67_3_a11
ER  - 
%0 Journal Article
%A A. V. Vedyaev
%A M. E. Zhuravlev
%A V. A. Ivanov
%T Phase transitions in one-dimensional Hubbard model with degeneracy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 470-473
%V 67
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a11/
%G ru
%F TMF_1986_67_3_a11
A. V. Vedyaev; M. E. Zhuravlev; V. A. Ivanov. Phase transitions in one-dimensional Hubbard model with degeneracy. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 3, pp. 470-473. http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a11/

[1] Hubbard J., Proc. Roy. Soc., A276:1365 (1963), 238–257 | DOI

[2] Lieb E. H., Wu F. F., Phys. Rev. Lett., 20:25 (1968), 1445–1448 | DOI | MR

[3] Ovchinnikov A. A., Ukrainskii I. I., Kventsel G. F., UFN, 108:1 (1972), 81–111 | DOI

[4] Ovchinnikov A. A., ZhETF, 57:6(12) (1969), 2137–2143

[5] Vedyaev A. V., Ivanov V. A., Shilov V. E., TMF, 64:1 (1985), 163–170 | MR

[6] Choy T. C., Haldane F. D. M., Phys. Lett., 90A:1/2 (1982), 83–84 ; Choy T. C., Phys. Lett., 80A:1 (1980), 49–52 | DOI | MR | DOI | MR

[7] Shiba H., Progr. Theor. Phys., 48 (1972), 2171–2186 | DOI