Phase transitions in one-dimensional Hubbard model with degeneracy
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 3, pp. 470-473
Cet article a éte moissonné depuis la source Math-Net.Ru
A solution in quadratures of the doubly orbitally degenerate Hubbard chain with strong correlations of the electrons in one orbital is obtained by means of the spin-symmetrized Bethe–Gaudin–Yaug ansatz. The correlation gap in the dielectric phase is due to both interorbital Coulomb repulsion of the electrons and their Hund exchange interaction. The possibilities of a Mort transition are investigated.
@article{TMF_1986_67_3_a11,
author = {A. V. Vedyaev and M. E. Zhuravlev and V. A. Ivanov},
title = {Phase transitions in one-dimensional {Hubbard} model with degeneracy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {470--473},
year = {1986},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a11/}
}
TY - JOUR AU - A. V. Vedyaev AU - M. E. Zhuravlev AU - V. A. Ivanov TI - Phase transitions in one-dimensional Hubbard model with degeneracy JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1986 SP - 470 EP - 473 VL - 67 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a11/ LA - ru ID - TMF_1986_67_3_a11 ER -
A. V. Vedyaev; M. E. Zhuravlev; V. A. Ivanov. Phase transitions in one-dimensional Hubbard model with degeneracy. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 3, pp. 470-473. http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a11/
[1] Hubbard J., Proc. Roy. Soc., A276:1365 (1963), 238–257 | DOI
[2] Lieb E. H., Wu F. F., Phys. Rev. Lett., 20:25 (1968), 1445–1448 | DOI | MR
[3] Ovchinnikov A. A., Ukrainskii I. I., Kventsel G. F., UFN, 108:1 (1972), 81–111 | DOI
[4] Ovchinnikov A. A., ZhETF, 57:6(12) (1969), 2137–2143
[5] Vedyaev A. V., Ivanov V. A., Shilov V. E., TMF, 64:1 (1985), 163–170 | MR
[6] Choy T. C., Haldane F. D. M., Phys. Lett., 90A:1/2 (1982), 83–84 ; Choy T. C., Phys. Lett., 80A:1 (1980), 49–52 | DOI | MR | DOI | MR
[7] Shiba H., Progr. Theor. Phys., 48 (1972), 2171–2186 | DOI