Solvable model of quadrupole glass with axial interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 3, pp. 463-469 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of quadrupole glass with infinite interaction range between axial quadrupoles is considered in the framework of a replica-symmetric approach. It is shown that there is a mixed phase in the system. The orientation order parameter and the glass order parameter increase continuously with decreasing temperature. At $T=0$, the entropy is positive. The specific heat has a maximum at finite temperature.
@article{TMF_1986_67_3_a10,
     author = {E. A. Luchinskaya and V. N. Ryzhov and E. E. Tareeva},
     title = {Solvable model of quadrupole glass with axial interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {463--469},
     year = {1986},
     volume = {67},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a10/}
}
TY  - JOUR
AU  - E. A. Luchinskaya
AU  - V. N. Ryzhov
AU  - E. E. Tareeva
TI  - Solvable model of quadrupole glass with axial interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 463
EP  - 469
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a10/
LA  - ru
ID  - TMF_1986_67_3_a10
ER  - 
%0 Journal Article
%A E. A. Luchinskaya
%A V. N. Ryzhov
%A E. E. Tareeva
%T Solvable model of quadrupole glass with axial interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 463-469
%V 67
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a10/
%G ru
%F TMF_1986_67_3_a10
E. A. Luchinskaya; V. N. Ryzhov; E. E. Tareeva. Solvable model of quadrupole glass with axial interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 3, pp. 463-469. http://geodesic.mathdoc.fr/item/TMF_1986_67_3_a10/

[1] Schuch A. F., Mills R. L., Depatie D. A., Phys. Rev., 165:3 (1968), 1032–1040 | DOI | MR

[2] Raich J. C., Etters R. D., Phys. Rev., 155:2 (1967), 457–460 | DOI

[3] Tareyeva E. E., Trapezina T. I., Phys. Lett., 57A:2 (1975), 114–116 ; Тареева Е. Е., Трапезина Т. И., ТМФ, 26:2 (1976), 269–276 | DOI

[4] Silvera I. F., Rev. Mod. Phys., 52:2 (1980), 393–452 | DOI

[5] Sullivan N. S., Devoret M., Cowan B. P., Urbina C., Phys. Rev., 17B:12 (1978), 5016–5024 | DOI

[6] Devoret M., Estève D., J. Phys. C: Solid State Phys., 16:10 (1983), 1827–1840 | DOI

[7] Estève D., Devoret M., Sullivan N. S., J. Phys. C: Solid State Phys., 15:26 (1982), 5455–5466 | DOI

[8] Sullivan N. S., Devoret M., Estève D., Phys. Rev., 30B:9 (1984), 4935–4945 | DOI

[9] Washburn S., Calkins M., Meyer H., Harris A. B., J. Low Temp. Phys., 49:1/2 (1982), 101–122 | DOI

[10] Meyer H., Washburn S., J. Low Temp. Phys., 57:1/2 (1984), 31–54 | DOI

[11] Calkins M., Meyer H., J. Low Temp. Phys., 57:3/4 (1984), 265–282 | DOI

[12] Harris A. B., Meyer H., Canad. J. Phys., 63:1 (1985), 3–23 | DOI

[13] Sherrington D., Kirkpatrick S., Phys. Rev. Lett., 35:26 (1975), 1792–1796 | DOI

[14] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, ch. 1, Fizmatgiz, M., 1963

[15] Lutchinskaia E. A., Ryzhov V. N., Tareyeva E. E., J. Phys. C: Solid State Phys., 17:26 (1984), L665–L667 | DOI

[16] Haase D. G., Perrell L. R., Saleh A. M., J. Low Temp. Phys., 55:3/4 (1984), 283–296 | DOI