Equilibrium equations for the class of continuous systems with positive-definite two-body interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 289-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new criterion for the uniqueness of limit Gibbs states is formulated and proved for the class of continuous classical systems of particles interacting by means of a positive-definite two-body potential. The most important tools used in the proof are certain correlation inequalities of Ginibre type.
@article{TMF_1986_67_2_a8,
     author = {R. Gelerak},
     title = {Equilibrium equations for the class of continuous systems with positive-definite two-body interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {289--303},
     year = {1986},
     volume = {67},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a8/}
}
TY  - JOUR
AU  - R. Gelerak
TI  - Equilibrium equations for the class of continuous systems with positive-definite two-body interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 289
EP  - 303
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a8/
LA  - ru
ID  - TMF_1986_67_2_a8
ER  - 
%0 Journal Article
%A R. Gelerak
%T Equilibrium equations for the class of continuous systems with positive-definite two-body interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 289-303
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a8/
%G ru
%F TMF_1986_67_2_a8
R. Gelerak. Equilibrium equations for the class of continuous systems with positive-definite two-body interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 289-303. http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a8/

[1] Mayer J. E., J. Chem. Phys., 10 (1942), 629 | DOI | MR

[2] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971

[3] Klein W., J. Math. Phys., 16 (1975), 1482–1487 | DOI | MR | Zbl

[4] Pastur L. A., TMF, 18:2 (1974), 233–242 | MR

[5] Zagrebnov V. A., Pastur L. A., TMF, 36:3 (1978), 352–372 | MR

[6] Zagrebnov V. A., J. Stat. Phys., 27(3) (1982), 577–591 | DOI | MR | Zbl

[7] Morall H., Physica, 81A (1975), 469–474 ; 87A (1977), 331–343 | DOI | DOI

[8] Georgii H. O., Canonical Bibbs Measures, Lecture Notes in Mathematics, 760, Springer-Verlag, 1979 | DOI | MR | Zbl

[9] Preston J., Gibbs Fields, Lecture Notes in Mathematics, 53A, Springer-Verlag, 1976 | DOI | MR

[10] Sinai Ya. G., Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR

[11] Ruelle D., Ann. of Phys., 25 (1963), 109–120 | DOI | MR

[12] Ruelle D., Commun. Math. Phys., 68 (1970), 127–159 | DOI | MR

[13] Dobrushin R. L., Funkts. analiz i ego prilozh., 2 (1968), 44–57 ; ТМФ, 4:1 (1970), 101–118 | MR | Zbl | MR | Zbl

[14] Dobrushin R. L., Pecherski E. A., Lect. Notes in Math., 1021, Springer-Verlag, New York, 1983, 97 | DOI | MR

[15] Klein O., Commun. Math. Phys., 86 (1982), 227–246 | DOI | MR | Zbl

[16] Bogolyubov N. N., Khatset B. V., DAN SSSR, 66 (1949), 321–324 ; Боголюбов Н. Н., Избр. тр. в трех томах, т. 2, Наукова думка, Киев, 1970, 494–498. ; Боголюбов Н. Н., Петрина Д. Я., Хацет Б. В., ТМФ, 1:2 (1969), 251–274 | MR | Zbl | MR | Zbl | MR

[17] Siegert A. J. F., Physica, 26 (1960), 30 | DOI | MR | Zbl

[18] Fröhlich J., Commun. Math. Phys., 47 (1976), D33 | DOI | MR

[19] Fröhlich J., Park Y. M., Commun. Math. Phys., 57 (1978), 235 | DOI

[20] Brydges D., Commun. Math. Phys., 58 (1978), 313 ; Brydges D., Federbush P., Commun. Math. Phys., 73 (1980), 197 ; Park Y. M., Commun. Math. Phys., 70 (1979), 161 ; Imbrie J., Commun. Math. Phys., 87 (1983), 515 | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[21] Fröhlich J., Spencer T., J. Stat. Phys., 24 (1981), 527 | DOI | MR

[22] Fontaine J. R., Martin Ph. A., J. Stat. Phys., 36 (1984), 163–179 | DOI | MR

[23] Aizenmann M., Martin Ph. A., Commun. Math. Phys., 78 (1980), 99 ; Aizenmann M., Fröhlich J., J. Stat. Phys., 36 (1984), 163–179 | DOI | MR | DOI

[24] Albeverio S., Hoegh-Krohn R., Commun. Math. Phys., 68 (1979), 95–128 ; Gielerak R., J. Math. Phys. (to appear) | DOI | MR | Zbl | MR

[25] Gielerak R., Zegarlinski B., Fortschr. Physik, 1984, 1–24 | DOI | MR

[26] Lebowitz J. L., Martin-Lof A., Commun. Math. Phys., 25 (1976), 276–282 ; Lebowitz J. L., Ruttgers University Preprint, Ruttgers, 1975 ; Bricmont J., Fontaine J. R., Landau L. J., Commun. Math. Phys., 56 (1977), 281–296 ; Messager A., Miracle S., Pfister Ch.-E., Commun. Math. Phys., 58 (1978), 19–29 | DOI | MR | MR | DOI | MR | DOI | MR

[27] Pfister Ch.-E., Commun. Math. Phys., 86 (1982), 375–390 ; Fröhlich J., Pfister Ch.-E., Commun. Math. Phys., 89 (1983), 303–327 | DOI | MR | DOI | MR

[28] Ngyen X. X., Zessin H., Math. Nachr., 88 (1979), 105 | DOI | MR

[29] Kerstan I., Tattes K., Mekke I., Bezgranichno delimye tochechnye protsessy, Nauka, M., 1982 | MR | Zbl

[30] Gelerak R., Preprint R-17-85-770, OIYaI, Dubna, 1985 | MR

[31] Gielerak R., Fortschr. Physik, 29(1) (1981), 19–34 | DOI | MR

[32] Ginibre J., Commun. Math. Phys., 16 (1970), 310–328 | DOI | MR

[33] Fröhlich J., Pfister Ch.-E., Commun. Math. Phys., 81 (1981), 277–298 ; Gruber Ch., Martin P. A., Phys. Rev. Lett., 45 (1980), 853 ; Ann. of Phys., 131 (1981), 56 | DOI | MR | DOI | MR | DOI | MR

[34] Gielerak R., Fortschr. der Physik (to appear) | MR

[35] Dimock J., Glimm J., Adv. Math., 12 (1974), 58–83 | DOI | MR | Zbl

[36] Lenard A., J. Math. Phys., 4 (1963), 553 ; 2 (1961), 682 | DOI | MR | DOI | MR | Zbl

[37] Zagrebnov V. A., TMF, 51:3 (1982), 389–402 | MR