Equilibrium equations for the class of continuous systems with positive-definite two-body interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 289-303

Voir la notice de l'article provenant de la source Math-Net.Ru

A new criterion for the uniqueness of limit Gibbs states is formulated and proved for the class of continuous classical systems of particles interacting by means of a positive-definite two-body potential. The most important tools used in the proof are certain correlation inequalities of Ginibre type.
@article{TMF_1986_67_2_a8,
     author = {R. Gelerak},
     title = {Equilibrium equations for the class of continuous systems with positive-definite two-body interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {289--303},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a8/}
}
TY  - JOUR
AU  - R. Gelerak
TI  - Equilibrium equations for the class of continuous systems with positive-definite two-body interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 289
EP  - 303
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a8/
LA  - ru
ID  - TMF_1986_67_2_a8
ER  - 
%0 Journal Article
%A R. Gelerak
%T Equilibrium equations for the class of continuous systems with positive-definite two-body interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 289-303
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a8/
%G ru
%F TMF_1986_67_2_a8
R. Gelerak. Equilibrium equations for the class of continuous systems with positive-definite two-body interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 289-303. http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a8/