Equilibrium equations for the class of continuous systems with positive-definite two-body interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 289-303
Voir la notice de l'article provenant de la source Math-Net.Ru
A new criterion for the uniqueness of limit Gibbs states is formulated and proved
for the class of continuous classical systems of particles interacting by means of
a positive-definite two-body potential. The most important tools used in the proof
are certain correlation inequalities of Ginibre type.
@article{TMF_1986_67_2_a8,
author = {R. Gelerak},
title = {Equilibrium equations for the class of continuous systems with positive-definite two-body interaction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {289--303},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a8/}
}
TY - JOUR AU - R. Gelerak TI - Equilibrium equations for the class of continuous systems with positive-definite two-body interaction JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1986 SP - 289 EP - 303 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a8/ LA - ru ID - TMF_1986_67_2_a8 ER -
R. Gelerak. Equilibrium equations for the class of continuous systems with positive-definite two-body interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 289-303. http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a8/