@article{TMF_1986_67_2_a7,
author = {L. A. Pokrovskii},
title = {Solution of the system of {Lorenz} equations in the asymptotic limit of large {Rayleigh} numbers. {II.~Description} of trajectories near a~separatrix by the matching method},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {263--288},
year = {1986},
volume = {67},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a7/}
}
TY - JOUR AU - L. A. Pokrovskii TI - Solution of the system of Lorenz equations in the asymptotic limit of large Rayleigh numbers. II. Description of trajectories near a separatrix by the matching method JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1986 SP - 263 EP - 288 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a7/ LA - ru ID - TMF_1986_67_2_a7 ER -
%0 Journal Article %A L. A. Pokrovskii %T Solution of the system of Lorenz equations in the asymptotic limit of large Rayleigh numbers. II. Description of trajectories near a separatrix by the matching method %J Teoretičeskaâ i matematičeskaâ fizika %D 1986 %P 263-288 %V 67 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a7/ %G ru %F TMF_1986_67_2_a7
L. A. Pokrovskii. Solution of the system of Lorenz equations in the asymptotic limit of large Rayleigh numbers. II. Description of trajectories near a separatrix by the matching method. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 263-288. http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a7/
[1] Pokrovskii L. A., TMF, 62:2 (1985), 272–290 | MR
[2] Belobrovov P. I., Zaslavskii G. M., Tartakovskii G. Kh., ZhETF, 71 (1976), 1799–1785
[3] Zaslavskii G. M., Stokhastichnost dinamicheskikh sistem, Nauka, M., 1984 | MR | Zbl
[4] Haken H., Phys. Lett., 53A (1975), 77–79 | DOI
[5] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1958 | MR
[6] Sinai Ya. G., Shilnikov L. P. (red.), Strannye attraktory, Mir, M., 1981 | MR
[7] Afraimovich V. S., Bykov V. V., Shilnikov L. P., Tr. Mosk. matem. ob-va, 44, 1982, 150–212 | MR | Zbl
[8] Guckenheimer J., Holmes P., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer-Verlag, N. Y.–Berlin–Heidelberg–Tokyo, 1983 | MR | Zbl
[9] Likhtenberg A., Liberman M., Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984
[10] Arnold V. I., “Problema ustoichivosti i ergodicheskie svoistva klassicheskikh dinamicheskikh sistem”, Tr. Mezhdunarodnogo kongressa matematikov (Moskva, 1966), Mir, M., 1968 | MR | Zbl
[11] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR
[12] Shilnikov L. P., “Teoriya bifurkatsii i model Lorentsa”, dopolnenie II k kn.: Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR
[13] Zaslavskii G. M., Chirikov B. V., UFN, 101 (1973), 3–58
[14] Smeil S., UMN, 25:1 (1970), 113–185 | MR
[15] Kaplan D. L., Iorke Dzh. A., “Predturbulentnost: rezhim, nablyudaemyi v techenii zhidkosti, opisyvaemoi modelyu Lorentsa”, Strannye attraktory, Mir, M., 1981
[16] Feigenbaum M. Dzh., UFN, 141 (1983), 343–374 | DOI | MR
[17] Collet P., Eckmann J. P., Lanhord O. F., Commun. Math. Phys., 76 (1980), 211–222 | DOI | MR
[18] Feigenbaum M. J., J. Stat. Phys., 19 (1978), 25–34 ; 21 (1979), 669–678 | DOI | MR | DOI | MR
[19] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR