Quasienergy integral for canonical maps
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 223-236

Voir la notice de l'article provenant de la source Math-Net.Ru

Canonical (area-preserving) maps of the phase plane of action-angle variables whose coefficients do not depend explicitly on the number of mapping steps are considered. Just as the absence of an explicit time dependence of the coefficients of a canonical system of differential equations leads to energy conservation, such maps may have an integral of the motion – called a quasienergy integral. It is shown that such an integral can be constructed in the form of a series of analytic functions, a perturbation-theory series, and the superconvergent series of Kolmogorov–Arnol'd–Moser (KAM) theory. These series converge only in limited regions of the phase plane, and their sums have simple poles at fixed (resonance) points of the map. For a sufficiently small perturbation constant $g$, it is possible to find approximate regular expressions for the quasienergy near any given resonance with any finite accuracy in $g$. The regions of applicability of the obtained expressions overlap, and this makes it possible to construct at small $g$ an approximate phase portrait of the map on the complete phase plane.
@article{TMF_1986_67_2_a4,
     author = {V. V. Sokolov},
     title = {Quasienergy integral for canonical maps},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {223--236},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a4/}
}
TY  - JOUR
AU  - V. V. Sokolov
TI  - Quasienergy integral for canonical maps
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 223
EP  - 236
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a4/
LA  - ru
ID  - TMF_1986_67_2_a4
ER  - 
%0 Journal Article
%A V. V. Sokolov
%T Quasienergy integral for canonical maps
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 223-236
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a4/
%G ru
%F TMF_1986_67_2_a4
V. V. Sokolov. Quasienergy integral for canonical maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 223-236. http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a4/