Quadrupolar glass model with arbitrary distribution of the coupling constants
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 314-319

Voir la notice de l'article provenant de la source Math-Net.Ru

Bogolyubov' s variational principle arid the method of approximating Hamiltonians are used to obtain equations for the free energy density in a generalized quadrupolar glass model for arbitrary distribution of the exchange interactions. Two definite models are considered by means of the proposed method. It is suggested that continuous growth of the orientational order parameter and the glass order parameter with decreasing temperature is determined by the quadrupole interaction itself and not by the form of the distribution of the coupling constants. It is shown that in a system with pure glass ordering there is no quadrupole phase.
@article{TMF_1986_67_2_a11,
     author = {E. A. Luchinskaya},
     title = {Quadrupolar glass model with arbitrary distribution of the coupling constants},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {314--319},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a11/}
}
TY  - JOUR
AU  - E. A. Luchinskaya
TI  - Quadrupolar glass model with arbitrary distribution of the coupling constants
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 314
EP  - 319
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a11/
LA  - ru
ID  - TMF_1986_67_2_a11
ER  - 
%0 Journal Article
%A E. A. Luchinskaya
%T Quadrupolar glass model with arbitrary distribution of the coupling constants
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 314-319
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a11/
%G ru
%F TMF_1986_67_2_a11
E. A. Luchinskaya. Quadrupolar glass model with arbitrary distribution of the coupling constants. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 314-319. http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a11/