Percolation in random fields. III
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 177-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An ergodic symmetrically distributed random field on a plane with infinitely smooth realizations and finite moments up to any order inclusively that does not admit percolation at any level $-\infty is constructed.
@article{TMF_1986_67_2_a1,
     author = {S. A. Molchanov and A. K. Stepanov},
     title = {Percolation in random {fields.~III}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {177--185},
     year = {1986},
     volume = {67},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a1/}
}
TY  - JOUR
AU  - S. A. Molchanov
AU  - A. K. Stepanov
TI  - Percolation in random fields. III
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 177
EP  - 185
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a1/
LA  - ru
ID  - TMF_1986_67_2_a1
ER  - 
%0 Journal Article
%A S. A. Molchanov
%A A. K. Stepanov
%T Percolation in random fields. III
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 177-185
%V 67
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a1/
%G ru
%F TMF_1986_67_2_a1
S. A. Molchanov; A. K. Stepanov. Percolation in random fields. III. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 2, pp. 177-185. http://geodesic.mathdoc.fr/item/TMF_1986_67_2_a1/

[1] Molchanov S. A., Stepanov A. K., TMF, 55:2 (1983), 246–256 | MR

[2] Molchanov S. A., Stepanov A. K., TMF, 55:3 (1983), 419–430 | MR

[3] Shklovskii B. I., Efros A. L., Elektronnye svoistva legirovannykh poluprovodnikov, Nauka, M., 1979

[4] Efros A. L., Fizika i geometriya besporyadka, Nauka, M., 1982 | MR

[5] Stepanov A. K., TMF, 67:1 (1986), 32–39 | MR

[6] Mandelbrot B. B., Fractals: Form, Chance and Dimension, Freeman W. H., S. F., 1977 | MR | Zbl

[7] Higuchi Ya., Z. Wahr. verw. Geb., 61 (1982), 229–238 | DOI | MR

[8] Tóth B., A lower bound for the critical probability of the square lattice site percolation, Preprint No 32, Mathematical Institute of the HAS, Budapest, 1984 | MR

[9] Kesten H., Percolation theory for mathematicians, Birkhauser, Boston, 1982 | MR | Zbl

[10] Malyshev V. A., UMN, 35:2 (1980), 3–53 | MR