Front form of relativistic Lagrangian dynamics in two-dimensional space-time and its connection with the Hamiltonian description
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 1, pp. 102-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Lagrangian relativistic theory is formulated in two-dimensional space-time in the front form of dynamics; the connection between it and predictive mechanics, the Hamiltonian description, and the theory of Fokker action integrals is established. Relations are found in a closed form without the use of formal expansions. The existence of mathematical restrictions on the values of the two-particle interaction Lagrangians is established.
@article{TMF_1986_67_1_a9,
     author = {S. N. Sokolov and V. I. Tretyak},
     title = {Front form of relativistic {Lagrangian} dynamics in two-dimensional space-time and its connection with the {Hamiltonian} description},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {102--114},
     year = {1986},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a9/}
}
TY  - JOUR
AU  - S. N. Sokolov
AU  - V. I. Tretyak
TI  - Front form of relativistic Lagrangian dynamics in two-dimensional space-time and its connection with the Hamiltonian description
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 102
EP  - 114
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a9/
LA  - ru
ID  - TMF_1986_67_1_a9
ER  - 
%0 Journal Article
%A S. N. Sokolov
%A V. I. Tretyak
%T Front form of relativistic Lagrangian dynamics in two-dimensional space-time and its connection with the Hamiltonian description
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 102-114
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a9/
%G ru
%F TMF_1986_67_1_a9
S. N. Sokolov; V. I. Tretyak. Front form of relativistic Lagrangian dynamics in two-dimensional space-time and its connection with the Hamiltonian description. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 1, pp. 102-114. http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a9/

[1] Sokolov S. N., Theory of Relativistic Direct Interactions, Preprint 78-125, IHEP, Serpukhov, 1978 | MR

[2] Gaida R. P., EChAYa, 13:2 (1982), 427–493

[3] J. Llosa (ed.), Relativistic Action at a Distance: Classical and Quantum Aspects, Lecture Notes in Physics, 162, Springer-Verlag, Berlin–Heidelberg–New York, 1982 | DOI | MR

[4] Nikolov P. A., Todorov I. T., EChAYa, 14:5 (1983), 1092–1111 | MR

[5] Dirac P. A. M., Rev. Mod. Phys., 21:3 (1949), 392–399 | DOI | MR | Zbl

[6] Sokolov S. N., TMF, 36:2 (1978), 193–207 ; ДАН СССР, 233:4 (1977), 575–578 | MR | MR

[7] Sokolov S. N., Shatnii A. N., TMF, 37:3 (1978), 291–304 | MR

[8] Leutwyler H., Stern J., Ann. Phys. (U. S.), 112:1 (1978), 94–165 | DOI | MR

[9] Sokolov S. N., Relyativistskaya klassicheskaya gamiltonova mekhanika v trekh formakh dinamiki, Preprint 81-78, IFVE, Serpukhov, 1981

[10] Sokolov S. N., Coordinates in Relativistic Hamiltonian Mechanics, Preprint 84-139, IHEP, Serpukhov, 1984 | MR

[11] Gaida R. P., Klyuchkovskii Yu. B., Tretyak V. I., TMF, 44:2 (1980), 194–208 | MR

[12] Gaida R. P., Klyuchkovskii Yu. B., Tretyak V. I., TMF, 45:2 (1980), 180–198 | MR

[13] Tretyak V. I., Klassicheskoe lagranzhevo opisanie sistemy chastits v razlichnykh formakh relyativistskoi dinamiki, Preprint ITF 82-88R, ITF AN USSR, Kiev, 1982

[14] Gaida R. P., Klyuchkovskii Yu. B., Tretyak V. I., TMF, 55:1 (1983), 88–105 | MR

[15] Gaida R. P., Tretyak V. I., Lagranzhiany pryamykh vzaimodeistvii i gamiltonovo opisanie sistemy chastits v razlichnykh formakh relyativistskoi dinamiki, Preprint ITF 82-87R, ITF AN USSR, Kiev, 1982

[16] Bakker B. L. G., Kondratyuk L. A., Terent'ev M. V., Nucl. Phys., B158:2–3 (1979), 497–519 | DOI | MR

[17] Kondratyuk L. A., Terentev M. V., YaF, 31:4 (1980), 1087–1106 | MR

[18] Malek S., Hugentobler E., Phys. Rev., D20:8 (1979), 1849–1856

[19] Sokolov S. N., DAN SSSR, 221:4 (1975), 809–812 | MR

[20] Kerner E. H., J. Math. Phys., 9:2 (1968), 222–232 | DOI | MR | Zbl

[21] Hill R. N., J. Math. Phys., 11:6 (1970), 1918–1937 | DOI | MR

[22] Sokolov S. N., TMF, 32:3 (1977), 354–359 | MR

[23] Currie D. G., Jordan T. F., Sudarshan E. C. G., Rev. Mod. Phys., 35:2 (1963), 350–375 | DOI | MR

[24] Havas P., Problems in the Foundations of Physics, Springer-Verlag, Berlin, 1971, 31–48 | DOI | MR

[25] Gaida R. P., Tretyak V. I., Acta Phys. Pol., B11:7 (1980), 509–522

[26] Tretyak V. I., Gaida R. P., Acta Phys. Pol., B11:7 (1980), 523–536

[27] Rudd R. A., Hill R. N., J. Math. Phys., 11:9 (1970), 2704–2710 | DOI | MR

[28] Staruszkiewicz A., Ann. Phys. (DDR), 23:1–2 (1969), 66–70 ; Acta Phys. Pol., B2:2–3 (1971), 259–264 | DOI