Conformal invariance in gauge theories II. Yang–Mills theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 1, pp. 76-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of Part I are generalized to the non-Abelian ease. By analogy with conformal QED, in which interaction with a matter field is realized by means of a four-vector potential that transforms in accordance with a direct sum of two nonprincipal representations, the first step in the present paper is the construction of a new formulation of quantum eleetrodynamics, in which the four-vector potential is regarded as an independent variable. Although the potential as a whole transforms in accordance with a principal representation, the corresponding conformally invariant two-point functions have a nonzero transverse part, and the Lagrangian is nondegenerate. In the non-Abelian case, one manifestly conformally invariant gauge condition is found, and the corresponding functional determinant is calculated. It is shown that in the gauge-invariant sector this theory is equivalent to the ordinary theory with conformally noninvariant gauge condition. A local effective Lagrangian is constructed, the Faddeev–Popov “ghost” fields having in this case scale dimension zero. It is shown that this effective Lagrangian has a residual global supersymmetry of Becchi–Rouet–Stora type.
@article{TMF_1986_67_1_a7,
     author = {R. P. Zaikov},
     title = {Conformal invariance in gauge theories {II.~Yang{\textendash}Mills} theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {76--88},
     year = {1986},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a7/}
}
TY  - JOUR
AU  - R. P. Zaikov
TI  - Conformal invariance in gauge theories II. Yang–Mills theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 76
EP  - 88
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a7/
LA  - ru
ID  - TMF_1986_67_1_a7
ER  - 
%0 Journal Article
%A R. P. Zaikov
%T Conformal invariance in gauge theories II. Yang–Mills theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 76-88
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a7/
%G ru
%F TMF_1986_67_1_a7
R. P. Zaikov. Conformal invariance in gauge theories II. Yang–Mills theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 1, pp. 76-88. http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a7/

[1] Binegar B., Fronsdal C., Heidenreich W., Z. Math. Phys., 24 (1983), 2828–2846 | DOI | MR

[2] Zaikov R. P., Preprint E2-83-28, JINR, Dubna, 1983

[3] Bayen F., Flato M., J. Math. Phys., 17 (1976), 1112–1114 | DOI | MR

[4] Furlan P., Petkova V. B., Sotkov G. M., Todorov I. T., Preprint ISAS 52/83/EP, Trieste, 1983 | Zbl

[5] Petkova V. B., Sotkov G. M., Todorov I. T., Commun. Math. Phys., 97 (1985), 227–256 | DOI | MR | Zbl

[6] Bayen F., Flato M., Fronsdal C., Preprint UCLA/TEP/18, Los Angeles, 1984

[7] Fradkin E. S., Kozhevnikov A. A., Palchik M. Ya., Commun. Math. Phys., 91 (1983), 529–541 | DOI | MR

[8] Palchik M. Ya., J. Physics, A16 (1983), 1523–1527

[9] Krasnikov N. V., Phys. Lett., 126B (1983), 483–484 | DOI | MR

[10] Sotkov G. M., Stoyanov D. T., J. Physics, A13 (1980), 2807–2816 | MR

[11] Sotkov G. M., Stoyanov D. T., J. Physics, A16 (1983), 2817–2826 | MR

[12] Zaikov R. P., Preprint JINR E2-83-44, Dubna, 1983 | Zbl

[13] Todorov I. T., Preprint ISAS 4/85/EP, Trieste, 1985

[14] Kugo O., Ojima I., Suppl. Progr. Theor. Phys., 66 (1979), 1–130 | DOI

[15] Popov V. N., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[16] Faddeev L. D., Slavnov A. A., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR | Zbl

[17] Itsikson K., Zyuber Zh.-B., Kvantovaya teoriya polya, t. 2, Mir, M., 1984 | MR

[18] Ferrari R., Nuovo Cim., 19A (1974), 204–218 | DOI | MR

[19] Zwanziger D., Phys. Rev., D17 (1978), 457–468 | MR

[20] Becchi C., Rouet A., Stora R., Ann. Phys., 98 (1976), 287–321 | DOI | MR