Generalized coherent states for relativistic model of a linear oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 1, pp. 68-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generalized coherent states are obtained for a relativistic model of a linear oscillator in both the momentum and the configuration representation. The corresponding distribution function is calculated. It is shown that use of the semiclassical Bohr–Sommerfeld quantization rule leads to an exact expression for the energy levels of the relativistic oscillator.
@article{TMF_1986_67_1_a6,
     author = {N. M. Atakishiyev and R. M. Mir-Kassimov},
     title = {Generalized coherent states for relativistic model of a~linear oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {68--75},
     year = {1986},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a6/}
}
TY  - JOUR
AU  - N. M. Atakishiyev
AU  - R. M. Mir-Kassimov
TI  - Generalized coherent states for relativistic model of a linear oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 68
EP  - 75
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a6/
LA  - ru
ID  - TMF_1986_67_1_a6
ER  - 
%0 Journal Article
%A N. M. Atakishiyev
%A R. M. Mir-Kassimov
%T Generalized coherent states for relativistic model of a linear oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 68-75
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a6/
%G ru
%F TMF_1986_67_1_a6
N. M. Atakishiyev; R. M. Mir-Kassimov. Generalized coherent states for relativistic model of a linear oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 1, pp. 68-75. http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a6/

[1] Logunov A. A., Tavkhelidze A. N., Nuovo Cimento, 29:2 (1963), 380–399 | DOI | MR

[2] Kadyshevsky V. G., Nucl. Phys., B6:2 (1968), 125–148 | DOI

[3] Kadyshevsky V. G., Mir-Kasimov R. M., Skachkov N. B., Nuovo Cim., 55A:2 (1968), 233–257 | DOI

[4] Kadyshevskii V. G., Mir-Kasimov R. M., Skachkov N. B., YaF, 9:1 (1969), 212–223 | MR

[5] Kadyshevskii V. G., Mir-Kasimov R. M., Friman M., YaF, 9:3 (1969), 646–652 | MR

[6] Freeman M., Mateev M. D., Mir-Kasimov R. M., Nucl. Phys., B12 (1969), 197–215 | DOI

[7] Donkov A. D., Kadyshevskii V. G., Mateev M. D., Mir-Kasimov R. M., TMF, 8:1 (1971), 61–72 | MR

[8] Atakishiev N. M., Mir-Kasimov R. M., Nagiev Sh. M., TMF, 44:1 (1980), 47–62 ; Тр. IV международного семинара по проблемам физики высоких энергий и квантовой теории поля, т. 2 (Протвино, 1981), ИФВЭ, Протвино, 1982, 180–193 | MR

[9] Atakishiev N. M., TMF, 58:2 (1984), 254–260 | MR

[10] Kadyshevskii V. G., Mir-Kasimov R. M., Skachkov N. B., EChAYa, 2:3 (1972), 636–690

[11] Malkin I. A., Man'ko V. I., Coherent states of arbitrary quantum systems, Preprint No 15, PhIAN, M., 1971 ; Малкин И. А., Манько В. И., Динамические симметрии и когерентные состояния квантовых систем, Наука, М., 1979 | MR

[12] Perelomov A. M., Commun. Math. Phys., 26:3 (1972), 222–236 ; Переломов А. М., УФН, 123:1 (1977), 23–55 | DOI | MR | Zbl | DOI

[13] Kuratsuji H., Suzuki T., J. Math. Phys., 21:3 (1980), 472–476 | DOI | MR

[14] Gerry C. C., Silverman S., J. Math. Phys., 23:11 (1982), 1995–2003 | DOI | MR

[15] Gorokhov A. V., Teoretiko-gruppovye metody v fizike, Tr. mezhdunarodnogo seminara, t. 2 (Zvenigorod, 1982), Nauka, M., 1983, 201–209

[16] Gerry C. C., Togeas J. B., Silverman S., Phys. Rev., D28:8 (1983), 1939–1944 | MR

[17] Atakishiyev N. M., Proceedings of the International Symposium on the Theory of Elementary Particles, PHE 84-13 (Ahrenshoop, GDR, 1984), Berlin–Zeuthen, 1984, 56–67

[18] Inönü E., Wigner E. P., Proc. Nation. Acad. Scien. USA, 39:6 (1953), 510–524 | DOI | MR | Zbl

[19] Schweber S. S., J. Math. Phys., 3:5 (1962), 831–842 | DOI | MR | Zbl

[20] Berezin F. A., Commun. Math. Phys., 40:2 (1975), 153–174 | DOI | MR | Zbl