Duality principle for percolation in random fields on a plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 1, pp. 32-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of a duality problem for percolation of a continuous random field in a plane rectangle. This problem arose in physics in connection with the study of critical phenomena in disordered systems. A duality theorem which is stated and proved improves the theorem that exists in the physical literature for smooth random fields.
@article{TMF_1986_67_1_a3,
     author = {A. K. Stepanov},
     title = {Duality principle for percolation in random fields on a~plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {32--39},
     year = {1986},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a3/}
}
TY  - JOUR
AU  - A. K. Stepanov
TI  - Duality principle for percolation in random fields on a plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 32
EP  - 39
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a3/
LA  - ru
ID  - TMF_1986_67_1_a3
ER  - 
%0 Journal Article
%A A. K. Stepanov
%T Duality principle for percolation in random fields on a plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 32-39
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a3/
%G ru
%F TMF_1986_67_1_a3
A. K. Stepanov. Duality principle for percolation in random fields on a plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 1, pp. 32-39. http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a3/

[1] Shklovskii B. I., Efros A. L., Elektronnye svoistva legirovannykh poluprovodnikov, Nauka, M., 1979

[2] Molchanov S. A., Stepanov A. K., TMF, 55:2 (1983), 246–256 | MR

[3] Molchanov S. A., Stepanov A. K., DAN SSSR, 249:2 (1979), 294–297 | MR | Zbl

[4] Smyth R. T., Wierman J. C., First passage percolation on the square lattice, Lecture notes in mathematics, 671, Springer Verlag, 1978 | DOI | MR | Zbl

[5] Kesten H., Percolation theory for mathematicians, Berkhäuser, Boston, 1982 | MR

[6] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969 | MR

[7] Higuchi Ya., Z. Wahr. verw. Geb., 61 (1982), 229–238 | DOI | MR