Critical behavior and finite volume
Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 1, pp. 143-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An exactly solvable model is used to investigate the influence of the finite size of a system on its critical behavior. The renormalization of the critical temperature is calculated together with the critical exponents and the correlation function. A crossover of the critical exponents from their scaling values to the exponents of mean field theory is obtained. The possibility of complete disappearance of the region of scaling under the influence of the finite size of the system is demonstrated.
@article{TMF_1986_67_1_a12,
     author = {Yu. M. Ivanchenko and A. A. Lisyanskii and A. E. Filippov},
     title = {Critical behavior and finite volume},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {143--150},
     year = {1986},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a12/}
}
TY  - JOUR
AU  - Yu. M. Ivanchenko
AU  - A. A. Lisyanskii
AU  - A. E. Filippov
TI  - Critical behavior and finite volume
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 143
EP  - 150
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a12/
LA  - ru
ID  - TMF_1986_67_1_a12
ER  - 
%0 Journal Article
%A Yu. M. Ivanchenko
%A A. A. Lisyanskii
%A A. E. Filippov
%T Critical behavior and finite volume
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 143-150
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a12/
%G ru
%F TMF_1986_67_1_a12
Yu. M. Ivanchenko; A. A. Lisyanskii; A. E. Filippov. Critical behavior and finite volume. Teoretičeskaâ i matematičeskaâ fizika, Tome 67 (1986) no. 1, pp. 143-150. http://geodesic.mathdoc.fr/item/TMF_1986_67_1_a12/

[1] Ivanchenko Yu. M., Lisyanskii A. A., Filippov A. E., “Kriticheskoe povedenie magnitnykh sistem konechnogo ob'ema”, Magnitnye fazovye perekhody i kriticheskie yavleniya, Tezisy dokladov Vsesoyuznogo seminara, Makhachkala, 1984, 87–88

[2] Nightingale M. P., Physica A, 83:3 (1976), 561–572 | DOI | MR

[3] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 | MR

[4] Ma Sh., Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980

[5] Schneider T., Stall E., Beck H., Physica A, 79:21 (1975), 201–216 | DOI

[6] Plakida N. M., Tonchev N. S., TMF, 63:2 (1985), 270–279 | MR

[7] Berlin T. H., Kac H., Phys. Rev., 86:6 (1952), 821–835 | DOI | MR | Zbl

[8] Bogolyubov N. N. (ml.), Metod issledovaniya modelnykh gamiltonianov, Nauka, M., 1974 | MR

[9] Ioyce G. S., “Critical Properties of Spherical Model”, Phase Transition and Critical Phenomena, v. 2, eds. Domb C., Green M. S., Acad. Press, N.Y., 1972, 375–442 | MR